Citation: WU Hai-Jiang,  ZHANG Ya-Jiao,  LIU Qin,  CHEN Jia,  XU Bin,  XU Hua,  XIE Jian-Wei. Comparison of Different Hydrolysis Methods in DNA Adducts Analysis and Application[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1048-1056. doi: 10.19756/j.issn.0253-3820.221018 shu

Comparison of Different Hydrolysis Methods in DNA Adducts Analysis and Application

  • Corresponding author: XIE Jian-Wei, xiejianwei@bmi.ac.cn
  • Received Date: 12 January 2022
    Revised Date: 30 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22104153).

  • The identification and quantification of DNA adducts is an important technical issue in the research of DNA damage, epigenetics and genotoxic impurities screening. Various DNA hydrolysis methods with individual advantages are available for different applicable analytical purposes to produce bases, nucleosides or nucleic acid fragments. By taking the classic alkylation reagent mustard gas as a model compound, three common DNA hydrolysis methods including thermal hydrolysis, acid hydrolysis and enzymatic hydrolysis were comparatively used to pretreat the sample from in vitro incubation solution or in vivo animal exposure experiments. The produced DNA adducts were screened and quantitatively detected by mass spectrometry. Hydrolysis efficiency of DNA adducts in different analytical samples as well as different sites and adduct forms were investigated. Results showed that there were differences in the stability of DNA adducts derived from different base modification sites. The N-site adducts of guanine and adenine were relatively stable under each hydrolysis condition, while O6 site adducts of guanine were unstable to acid and thermal hydrolysis. In comparison, the efficiency of thermal hydrolysis was lower, while the acid hydrolysis was more efficient which improved 10.4%-94.9% hydrolysis yields and DNA-base adducts were more than 99% among the products, thus suitable for the quantitative analysis of structure-known DNA adducts by mass spectrometry. For enzymatic hydrolysis method, it could produce various adduct forms, such as base- and/or nucleoside-adducts, i.e., the product information was rich, which was suitable for screening and identification of structure-unknown adducts. However, the enzymatic hydrolysis efficiency was often affected by the factors such as DNA modification site, matrix effect and enzymatic hydrolysis conditions which might consequently affect the accuracy of DNA adduct quantification.
  • 加载中
    1. [1]

      JACKSON S P, BARTEK J. Nature, 2009, 461(7267):1071-1078.

    2. [2]

      YU Y, WANG P, CUI Y, WANG Y. Anal. Chem., 2018, 90(1):556-576.

    3. [3]

      BACH J, PEREMARTI J, ANNANGI B, MARCOS R, HERNANDEZ A. Arch. Toxicol., 2016, 90(8):1893-1905.

    4. [4]

      NGO L P, OWITI N A, SWARTZ C, WINTERS J, SU Y, GE J, XIONG A, HAN J, RECIO L, SAMSON L D, ENGELWARD B P. Nucleic Acids Res., 2020, 48(3):e13.

    5. [5]

      NAKAGAWA T, WAKUI M, HAYASHIDA T, NISHIME C, MURATA M. Anal. Bioanal. Chem., 2019, 411(27):7221-7231.

    6. [6]

      MURRAY K J, CARLSON E S, STORNETTA A, BALSKUS E P, VILLALTA P W, BALBO S. Anal. Chem., 2021, 93(14):5754-5762.

    7. [7]

      GUO J S, TURESKY R J. High-throughput, 2019, 8(2):1-25.

    8. [8]

      CHANG Y J, COOKE M S, HU C W, CHAO M R. Arch. Toxicol., 2018, 92(8):2665-2680.

    9. [9]

      GUO J, TURESKY R J, TARIFA A, DECAPRIO A P, COOKE M S, WALMSLEY S J, VILLALTA P W. Chem. Res. Toxicol., 2020, 33(4):852-854.

    10. [10]

      HU C W, CHANG Y J, COOKE M S, CHAO M R. Anal. Chem., 2019, 91(23):15193-15203.

    11. [11]

      YUE L, WEI Y, CHEN J, SHI H, LIU Q, ZHANG Y, HE J, GUO L, ZHANG T, XIE J, PENG S. Chem. Res. Toxicol., 2014, 27(4):490-500.

    12. [12]

      YUE L, ZHANG Y, CHEN J, ZHAO Z, LIU Q, WU R, GUO L, HE J, ZHAO J, XIE J, PENG S. Chem. Res. Toxicol., 2015, 28(3):532-540.

    13. [13]

      ZHANG Y, YUE L, NIE Z, CHEN J, GUO L, WU B, FENG J, LIU Q, XIE J. J. Chromatogr. B, 2014, 961:29-35.

    14. [14]

      GOGGIN M, ANDERSON C, PARK S, SWENBERG J, WALKER V, TRETYAKOVA N. Chem. Res. Toxicol., 2008, 21(5):1163-1170.

    15. [15]

      GEDIK C M, COLLINS A, DUBOIS J, DUEZ P, KOUEGNIGAN L, REES J F, LOFT S, MOLLER P, JENSEN A, POULSEN H, RISS B, WEIMANN A, CADET J, DOUKI T, RAVANT J L, SAUVAIGO S, FAURE H, MOREL I, MORIN B, EPE B, ECKERT I, HARTWIG A, SCHWERDTLE T, DOLARA P, GIOVANNELLI L, LODOVICI M, GUGLIELMI F, OLINSKI R, BIALKOWSKI K, FOKSINSKI M, GACKOWSKI D, DURACKOVA Z, MUCHOVA J, KORYTAR P, SIVONOVA M, DUSINSKA M, MISLANOVA C, PETROVSKA H, SMOLKOVA B, VINA J, LLORET A, SAEZ G, MOLLER L, HOFER T, ERIKSSON H, GREMAUD E, HERBERT K, WILD C, KELLY F, DUNSTER C, WHITE A, WOOD S, VAUGHAN N, ESCOD D. FASEB J., 2005, 19(1):82-84.

    16. [16]

      CRAIN P F. Methods Enzymol., 1990, 193:782-790.

    17. [17]

      QUINLIVAN E P, GREGORY J F. Anal. Biochem., 2008, 373(2):383-385.

    18. [18]

      HU C W, CHANG Y J, COOKE M S, CHAO M R. Anal. Chem., 2019, 91(23):15193-15203.

    19. [19]

      NOLL D M, MASON T M, MILLER P S. Chem. Rev., 2006, 106(2):277-301.

    20. [20]

      KEHE K, SZINICZ L. Toxicology, 2005, 214(3):198-209.

    21. [21]

      CHENG X, LIU C, YANG Y, LIANG L, CHEN B, YU H, XIA J, LIU S, LI Y. Toxicol. Lett., 2021, 344:46-57.

    22. [22]

      GUO J, CHEN H, UPADHYAYA P, ZHAO Y, TURESKY R J, HECHT S S. Chem. Res. Toxicol., 2020, 33(9):2475-2486.

  • 加载中
    1. [1]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    2. [2]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    3. [3]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    4. [4]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    5. [5]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    6. [6]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    7. [7]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    8. [8]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    9. [9]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    10. [10]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    11. [11]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    12. [12]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    13. [13]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    14. [14]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    15. [15]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Yuqing LiuShiling ZhangKai JiangShiyue DingLimei XuYingqi LiuTing WangFenfen ZhengWeiwei XiongJun-Jie Zhu . Near-infrared light responsive upconversion-DNA nanocapsules for remote-controlled CRISPR-Cas9 genome editing. Chinese Chemical Letters, 2025, 36(5): 110282-. doi: 10.1016/j.cclet.2024.110282

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    20. [20]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(16)
  • Abstract views(837)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return