Citation: XU Lin-long,  JIN Zhi-ming,  FAN Yi-qiang. Research Progress and Application of Microneedle and Microfluidics Integration[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 506-515. doi: 10.19756/j.issn.0253-3820.221017 shu

Research Progress and Application of Microneedle and Microfluidics Integration

  • Corresponding author: FAN Yi-qiang, fanyq@mail.buct.edu.cn
  • Received Date: 11 January 2022
    Revised Date: 21 March 2022

  • In recent years, microneedles have been widely used in the fields of medical biological diagnosis, such as sampling and detection, transdermal drug delivery, etc, because of its painless and convenient advantages. Microfluidic chip is used to control micro-fluid, which has the advantages such as less reagent loss, fast detection speed and sensitive detection, etc. It is also popular in biochemical analysis, environmental science and other fields. The development of microfluidic chips and microneedles in the early stage is relatively independent. With the wide application of microfluidic chips and microneedles in biomedicine and other fields and the emergence of advanced micromachining methods such as 3D printing, in recent years, microneedles and microfluidic chips show a trend of combined application. For example, micro-fluidic channels are added on the surface or inside of the micro-needle to realize accurate sampling or drug delivery, or micro-needles are embedded inside the micro-fluidic chip to realize accurate control of droplet generation. Although the combination of microneedles and microfluidic chips can be widely used in subcutaneous sampling, drug transportation, medical diagnosis and other fields, it is still unclear how to realize the integrated preparation and application of microneedles and microfluidic chips. In this paper, the combined application of microneedles and microfluidic chips at home and abroad in recent years is reviewed, the method system of the combined application of microfluidic chips and microneedles is summarized, and the development trend of the combined application of microneedles and microfluidic chips in the future is prospected.
  • 加载中
    1. [1]

      GILL H S, DENSON D D, BURRIS B A, PRAUSNITZ M R. Clin. J. Pain, 2008, 24(7):585-594.

    2. [2]

      ZHANG B L, ZHANG X P, CHEN B Z, FEI W M, CUI Y, GUO X D. Microchem. J., 2021, 162:105830.

    3. [3]

      MCGRATH M G, VRDOLJAK A, O’MAHONY C, OLIVEIRA J C, MOORE A C, CREAN A M. Int. J. Pharm.,2011, 415(1):140-149.

    4. [4]

      OMATSU T, CHUJO K, MIYAMOTO K, OKIDA M, NAKAMURA K, AOKI N, MORITA R. Opt. Express, 2010,18(17):17967-17973.

    5. [5]

      BYSTROVA S, LUTTGE R. Microelectron. Eng., 2011, 88(8):1681-1684.

    6. [6]

      AL-JAPAIRAI K A S, MAHMOOD S, ALMURISI S H, VENUGOPAL J R, HILLES A R, AZMANA M, RAMAN S. Int. J. Pharm., 2020, 587:119673.

    7. [7]

      KOYANI R D. J. Drug Delivery Sci. Technol., 2020, 60:102071.

    8. [8]

      MOON S J, LEE S S, LEE H S, KWON T H. Microsyst. Technol., 2005, 11(4-5):311-318.

    9. [9]

      NARAYANAN S P, RAGHAVAN S. Int. J. Adv. Des. Manuf. Technol., 2017, 93(1-4):407-422.

    10. [10]

      SHIN D, HYUN J. J. Ind. Eng. Chem., 2021, 95:126-133.

    11. [11]

      TU K T, CHUNG C K. 2015 IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems, 2015:494-497.

    12. [12]

      LEE K, LEE H C, LEE D S, JUNG H. Adv. Mater., 2010, 22(4):483-490.

    13. [13]

      SAMANT P P, PRAUSNITZ M R. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(18):4583-4588.

    14. [14]

      LI C G, LEE C Y, LEE K, JUNG H. Biomed. Microdevices, 2013, 15(1):17-25.

    15. [15]

      LIU T, CHEN M, FU J, SUN Y, LU C, QUAN G, PAN X, WU C. Acta Pharm. Sin. B, 2021, 11(8):2326-2343.

    16. [16]

      NAGARKAR R, SINGH M, NGUYEN H X, JONNALAGADDA S. J. Drug Delivery Sci. Technol., 2020, 59:101923.

    17. [17]

      SHENG T, LUO B, ZHANG W, GE X, YU J, ZHANG Y, GU Z. Adv. Drug Delivery Rev., 2021, 179:113919.

    18. [18]

      PRAUSNITZ M R, MIKSZTA J A, CORMIER M, ANDRIANOV A K. Curr. Top. Microbiol. Immunol., 2009,333:369-393.

    19. [19]

      MILLER P R, NARAYAN R J, POLSKY R. J. Mater. Chem. B, 2016, 4(8):1379-1383.

    20. [20]

      TEYMOURIAN H, TEHRANI F, MAHATO K, WANG J. Adv. Healthcare Mater., 2021, 10(17):2002255.

    21. [21]

      BECKER H, LOCASCIO L E. Talanta, 2002, 56(2):267-287.

    22. [22]

      ILIESCU C, TAYLOR H, AVRAM M, MIAO J M, FRANSSILA S. Biomicrofluidics, 2012, 6(1):016505.

    23. [23]

      STJERNSTRÖM M, ROERAADE J. J. Micromech. Microeng., 1998, 8(1):33-38.

    24. [24]

      MCDONALD J C, DUFFY D C, ANDERSON J R, CHIU D T, WU H, SCHUELLER O J, WHITESIDES G M.Electrophoresis, 2000, 21(1):27-40.

    25. [25]

      ZHOU L, ZHUANG G, LI G. Sens. Actuators, B, 2018, 261:364-371.

    26. [26]

      KOERNER T, BROWN L, XIE R, OLESCHUK R D. Sens. Actuators, B, 2005, 107(2):632-639.

    27. [27]

      FU G, TOR S B, HARDT D E, LOH N H. Microsyst. Technol., 2011, 17(12):1791-1798.

    28. [28]

      KLANK H, KUTTER J P, GESCHKE O. Lab Chip, 2002, 2(4):242-246.

    29. [29]

      AU A K, BHATTACHARJEE N, HOROWITZ L F, CHANG T C, FOLCH A. Lab Chip, 2015, 15(8):1934-1941.

    30. [30]

      DEMELLO A J. Nature, 2006, 442(7101):394-402.

    31. [31]

      BILITEWSKI U, GENRICH M, KADOW S, MERSAL G. Anal. Bioanal. Chem., 2003, 377(3):556-569.

    32. [32]

      SCHULTE T H, BARDELL R L, WEIGL B H. Clin. Chim. Acta, 2002, 321(1):1-10.

    33. [33]

      YAGER P, EDWARDS T, FU E, HELTON K, NELSON K, TAM M R, WEIGL B H. Nature, 2006, 442(7101):412-418.

    34. [34]

      ANDERSSON H, VAN DEN BERG A. Sens. Actuators, B, 2003, 92(3):315-325.

    35. [35]

    36. [36]

      MEHLING M, TAY S. Curr. Opin. Biotechnol., 2014, 25:95-102.

    37. [37]

      WONG H K, CHAN J M, KAMM R D, TIEN J. Annu. Rev. Biomed. Eng., 2012, 14:205-230.

    38. [38]

      MARLE L, GREENWAY G M. TrAC-Trends Anal. Chem., 2005, 24(9):795-802.

    39. [39]

    40. [40]

      JUNG M, JEONG D, YUN S S, LEE J H. Microsyst. Technol., 2015, 22(9):2287-2294.

    41. [41]

      PLAMADEALA C, GOSAIN S R, PURKHART S, BUCHEGGER B, HEITZ J. Proc. Int. Conf. Transparent Opt.Networks. 2018.

    42. [42]

      TRAUTMANN A, ROTH G L, NUJIQI B, WALTHER T, HELLMANN R. Microsyst. Nanoeng., 2019, 5:6.

    43. [43]

      MISHRA R, MAITI T K, BHATTACHARYYA T K. J. Micromech. Microeng., 2018, 28(10):105017.

    44. [44]

      RAD Z F, NORDON R E, ANTHONY C J, BILSTON L, PREWETT P D, ARNS J Y, ARNS C H, ZHANG L,DAVIES G J. Microsyst. Nanoeng., 2017, 3:17034.

    45. [45]

      BODHALE D, NISAR A, AFZULPURKAR N. Microfluid. Nanofluid., 2010, 8(3):373-392.

    46. [46]

      RISTAINO J B, SAVILLE A C, PAUL R, COOPER D C, WEI Q S. Plant Dis., 2020, 104(3):708-716.

    47. [47]

      JEYHANI M, GNYAWALI V, ABBASI N, HWANG D K, TSAI S S H. J Colloid Interface Sci., 2019, 553:382-389.

    48. [48]

      EVANDER M, RICCO A J, MORSER J, KOVACS G T A, LEUNG L L K, GIOVANGRANDI L. Lab Chip, 2013,13(4):722-729.

    49. [49]

      MANSOR M, TAKEUCHI M, NAKAJIMA M, HASEGAWA Y, AHMAD M. Appl. Sci., 2017, 7(2):170.

    50. [50]

      TAKEUCHI K, TAKAMA N, KIM B, SHARMA K, PAUL O, RUTHER P. Biomed. Microdevices, 2019, 21(1):28.

    51. [51]

      TAKEUCHI K, TAKAMA N, KIM B, SHARMA K, RUTHER P, PAUL O. IEEE/CPMT Int. Electron. Manuf.Technol. Symp. 2018:85-88.

    52. [52]

      YEUNG C, CHEN S, KING B, LIN H, KING K, AKHTAR F, DIAZ G, WANG B, ZHU J, SUN W,KHADEMHOSSEINI A, EMAMINEJAD S. Biomicrofluidics, 2019, 13(6):064125.

    53. [53]

      MILLER P R, XIAO X Y, BRENER I, BURCKEL D B, NARAYAN R, POLSKY R. Adv. Healthcare Mater, 2014,3(6):876-881.

    54. [54]

      ASHRAF M W, TAYYABA S, NISAR A, AFZULPURKAR N, BODHALE D W, LOMAS T, POYAI A,TUANTRANONT A. Cardiovasc Eng., 2010, 10(3):91-108.

    55. [55]

      YANG B, FANG X, KONG J. ACS Appl. Mater. Interfaces, 2019, 11(42):38448-38458.

    56. [56]

      SARABI M R, AHMADPOUR A, YETISEN A K, TASOGLU S. Appl. Sci., 2021, 11(12):5329.

    57. [57]

      KEUM D H, JUNG H S, WANG T, SHIN M H, KIM Y E, KIM K H, AHN G O, HAHN S K. Adv. Healthcare Mater., 2015, 4(8):1153-1158.

    58. [58]

      TAKEUCHI K, TAKAMA N, SHARMA K, PAUL O, RUTHER P, SUGA T, KIM B. Drug Delivery Transl. Res.,2022, 12(2):435-443.

    59. [59]

      VAN DER MAADEN K, LUTTGE R, VOS P J, BOUWSTRA J, KERSTEN G, PLOEMEN I. Drug Delivery Transl. Res., 2015, 5(4):397-406.

    60. [60]

      ESFANDYARPOUR R, ESFANDYARPOUR H, JAVANMARD M, HARRIS J S, DAVIS R W. Sens. Actuators, B,2013, 177:848-855.

    61. [61]

      LARRAñETA E, LUTTON R E M, WOOLFSON A D, DONNELLY R F. Mater. Sci. Eng., R, 2016, 104:1-32.

    62. [62]

      SANJAY S T, ZHOU W, DOU M, TAVAKOLI H, MA L, XU F, LI X. Adv. Drug Delivery Rev., 2018, 128:3-28.

    63. [63]

      WANG P, PAIK S, CHEN S, RAJARAMAN S, KIM S, ALLEN M G. J. Microelectromech. Syst., 2013, 22(5):1041-1053.

    64. [64]

      AMARNANI R, SHENDE P. Biomed. Microdevices, 2022, 24(1):4.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    3. [3]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    4. [4]

      Jianfu Zhang Wei Bai Juan Hou Chenyang Zou . Reform and Practice of “Project-Patent- Scholarly Paper” Integrated Teaching Mode: Taking “Polymer Processing” Course as an Example. University Chemistry, 2025, 40(4): 138-146. doi: 10.12461/PKU.DXHX202408138

    5. [5]

      Zhixin Zhou Ran Chen Yuanjian Zhang Songqin Liu Yanfei Shen . 分析化学课程本硕一体化的全英文教学改革. University Chemistry, 2025, 40(6): 64-70. doi: 10.12461/PKU.DXHX202407093

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    8. [8]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    12. [12]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    17. [17]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    18. [18]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    20. [20]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

Metrics
  • PDF Downloads(31)
  • Abstract views(1148)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return