Citation: LIU Ran,  PENG Yu-Bo,  HUANG Qing,  YANG Xing,  JIA Yue-Mei,  DU Yan,  JI Jian-Long. Current-Voltage Characteristics of Organic Electrochemical Transistors Considering Effects of Gate Polarization and Adsorbed Charge[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 878-888. doi: 10.19756/j.issn.0253-3820.221015 shu

Current-Voltage Characteristics of Organic Electrochemical Transistors Considering Effects of Gate Polarization and Adsorbed Charge

  • Corresponding author: JIA Yue-Mei,  DU Yan,  JI Jian-Long, 
  • Received Date: 8 January 2022
    Revised Date: 4 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 52175542), the Natural Science Foundation of Shanxi Province(No. 20210302123136), the Natural Science Foundation of Chongqing(No. cstc2020jcyj-msxmX0002), the Postdoctoral Foundation of China(No. 2020M673646) and the Science and Technology Development Program of Jilin Province Key Research and Development Project(No. 20210204126YY).

  • Organic electrochemical transistors(OECTs) are widely used in biosensing due to their good biocompatibility, low operating voltage, and excellent signal amplification ability. Functionalization of the gate electrode is crucial for OECTs-based biosensing. However, the existing theory cannot describe the influences of polarization and charge adsorption on the current-voltage(I-V) characteristics. In this work, the Bernards-Malliaras I-V characteristic is modified by constructing the series model of differential capacitance formed at gate/electrolyte and semiconductor-channel/electrolyte interfaces. The effectiveness of the modified model is discussed by experimental investigations, including changing the potentiostatic electrodeposition time, regulating the thickness of poly(3,4-ethylenedioxythio-phene):poly(styrenesulfonate) (PEDOT:PSS) film formed on the surface of the gate-electrode(0.80-3.73 μm) and the gate-electrode/electrolyte interface capacitance(CG) (24.01-120.10 μF). Experimental results show that the transconductance peak increases with the CG increments; when the gate electrode voltage(VG) is set as +0.6 V, the current flowing in the semiconductor channel current(IDS,l) increases monotonically with the CG increments; When VG is set as-0.6 V, IDS,l decreases monotonically with the CG increments. In addition, the aptamer probes anchored on the gate-electrode react specifically with different concentrations of adenosine triphosphate(10-12-10-5 mol/L).Experimental results show that IDS,l decreases with the increments of the adenosine triphosphate concentration,and thus, the amount of adsorbed charge. The qualitative theoretical analyses are consistent with the experimental results. The modified theoretical model proposed herein is expected to provide theoretical support for designing of OECTs and OECTs based biosensors.
  • 加载中
    1. [1]

      DONAHUE M J, WILLIAMSON A, STRAKOSAS X, FRIEDLEIN J T, MCLEOD R R, GLESKOVA H, MALLIARAS G G. Adv. Mater., 2018, 30(5):1705031.

    2. [2]

      TANG K, MIAO W J, GUO S. ACS Appl. Polym. Mater., 2021, 3(3):1436-1444.

    3. [3]

      YANG A N, YAN F. ACS Appl. Electron. Mater., 2021, 3(1):53-67.

    4. [4]

      WANG Y, ZHU C X, PFATTNER R, YAN H P, JIN L H, CHEN S C, MOLINA-LOPEZ F, LISSEL F, LIU J, RABIAH N I, CHEN Z, CHUNG J W, LINDER C, TONEY M F, MURMANN B, BAO Z N. Sci. Adv., 2017, 3(3):e1602076.

    5. [5]

      MA C A, LUO H X, LIU M Z, YANG H, LIU H L, ZHANG X Q, JIANG L. Chem. Eng. J., 2021, 425:131542.

    6. [6]

      CHEN S, SURENDRAN A, WU X H, LEE S Y, STEPHEN M, LEONG W L. Adv. Mater. Technol., 2020, 5(12):2000523.

    7. [7]

      LIN P, YAN F. Adv. Mater., 2012, 24(1):34-51.

    8. [8]

      BERNARDS D A, MALLIARAS G G. Adv. Funct. Mater., 2007, 17(17):3538-3544.

    9. [9]

      YU J, YANG A N, WANG N X, LING H F, SONG J J, CHEN X, LIAN Y D, ZHANG Z S, YAN F, GU M.Nanoscale, 2021, 13(5):2868-2874.

    10. [10]

      GALLIANI M, DIACCI C, BERTO M, SENSI M, BENI V, BERGGREN M, BORSARI M, SIMON D T, BISCARINI F, BORTOLOTTI C A. Adv. Mater. Interfaces, 2020, 7(23):2001218.

    11. [11]

      LIN P, LUO X T, HSING I M, YAN F. Adv. Mater., 2011, 23(35):4035-4040.

    12. [12]

      BERNARDS D A, MACAYA D J, NIKOLOU M, DEFRANCO J A, TAKAMATSU S, MALLIARAS G G. J.Mater. Chem., 2008, 18(1):116-120.

    13. [13]

      YAO W, WANG L, WANG H, ZHANG X, LI L. Biosens. Bioelectron., 2009, 24(11):3269-3274.

    14. [14]

      HUIZENGA D E, SZOSTAK J W. Biochemistry, 1995, 34(2):656-665.

    15. [15]

      SESSOLO M, KHODAGHOLY D, RIVNAY J, MADDALENA F, GLEYZES M, STEIDL E, BUISSON B, MALLIARAS G G. Adv. Mater., 2013, 25(15):2135-2139.

    16. [16]

      SHI Y B, ZHOU Y Q, SHEN R Z, LIU F Z, ZHOU Y R. J. Ind. Eng. Chem., 2021, 101:414-422.

    17. [17]

      DU X, WANG Z. Electrochim. Acta, 2003, 48(12):1713-1717.

    18. [18]

      PIGANI L, HERAS A, COLINAÁ, SEEBER R, LóPEZ-PALACIOS J. Electrochem. Commun., 2004, 6(11):1192-1198.

    19. [19]

      SHIBATA T, OHMI T. IEEE Trans. Electron Devices, 1992, 39(6):1444-1455.

    20. [20]

      RIVNAY J, LELEUX P, FERRO M, SESSOLO M, WILLIAMSON A, KOUTSOURAS D A, KHODAGHOLY D, RAMUZ M, STRAKOSAS X, OWENS R M, BENAR C, BADIER J M, BERNARD C, MALLIARAS G G. Sci.Adv., 2015, 1(4):e1400251.

    21. [21]

      INAL S, MALLIARAS G G, RIVNAY J. Nat. Commun., 2017, 8:1767.

    22. [22]

      LIANG Y Y, WU C T, FIGUEROA-MIRANDA G, OFFENHäUSSER A, MAYER D. Biosens. Bioelectron., 2019, 144:111668.

    23. [23]

      ZHOU Z W, ZHANG Q Y, YANG R X, WU H, ZHANG M H, QIAN C G, CHEN X Z, SUN M J. iScience, 2020, 23(2):100872.

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    5. [5]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    14. [14]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    20. [20]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

Metrics
  • PDF Downloads(12)
  • Abstract views(980)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return