Citation: LI Xia,  CHEN Zhuang-Zhuang,  FAN Ai-Hua,  ZHANG Li-Li,  SHAO Hui-Bo. Accumulation of Paracetamol on Surface of Simulated Cell Membrane Promoted by Hydrogen Bonding[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1364-1372. doi: 10.19756/j.issn.0253-3820.221012 shu

Accumulation of Paracetamol on Surface of Simulated Cell Membrane Promoted by Hydrogen Bonding

  • Corresponding author: SHAO Hui-Bo, hbs@bit.edu.cn
  • Received Date: 8 January 2022
    Revised Date: 3 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.21872006).

  • The widely used paracetamol (acetaminophen, APAP) for antipyretic and analgesic promoting enrichment on the cell membrane surface by means of hydrogen bonds is very important. In this work, 3-mercaptopropionic acid self-assembled monolayer (MPA SAM) containing hydrogen acceptors (negatively charged carboxylates) on the surface was used as simplified model to simulate the cell membrane surface. The enrichment of APAP promoted by hydrogen bonds on the surface of simulated cell membranes was studied by scanning electrochemical microscopy (SECM). The experimental results showed that with the increase of Mg2+ concentration or pH value, the carboxyl groups of MPA SAM dissociated and shifted positively to produce more carboxylates (hydrogen acceptors). The enrichment of APAP on the surface of MPA SAM was promoted. Furthermore, SECM image mode realized the visualization of enrichment. This work might provide a certain reference for understanding the enrichment of APAP promoted by hydrogen bonds on the surface of simulated cell membrane and the design of APAP sensors.
  • 加载中
    1. [1]

    2. [2]

      LI J, GAO J, THAI P K, SUN X, MUELLER J F, YUAN Z, JIANG G. Environ. Sci. Technol., 2018, 52(3):1561-1570.

    3. [3]

      MEIRELES A, FAIA S, GIAOURIS E, SIMOES M. Biofouling, 2018, 34(10):1150-1160.

    4. [4]

      PAN Y, BREIDT F, KATHARIOU S. Appl. Environ. Microbiol., 2006, 72(12):7711-7717.

    5. [5]

      RAMIN P, BROCK A L, CAUSANILLES A, VALVERDE-PEREZ B, EMKE E, DE VOOGT P, POLESEL F, PLOSZ B G. Environ. Sci. Technol., 2017, 51(18):10572-10584.

    6. [6]

      BAILLIE G S, DOUGLAS L J. Antimicrob. Agents Chemother., 1998, 42(8):2146-2149.

    7. [7]

      HAKKARAINEN J J, PAJANDER J, LAITINEN R, SUHONEN M, FORSBERG M M. Int. J. Pharm., 2012, 436(1-2):426-443.

    8. [8]

      ZUR J, PINSKI A, MARCHLEWICZ A, HUPERT-KOCUREK K, WOJCIESZYNSKA D, GUZIK U. Environ. Sci. Pollut. Res., 2018, 25(22):21498-21524.

    9. [9]

      KAMAZ M, WICKRAMASINGHE S R, ESWARANANDAM S, ZHANG W, JONES S M, WATTS M J, QIAN X. Int. J. Environ. Res. Public Health, 2019, 16(8):1363.

    10. [10]

      SOLANKI A, BOYER T H. Chemosphere, 2019, 218:818-826.

    11. [11]

      KOLAWOLE A O. Biochem. Biophys. Rep., 2017, 10:198-207.

    12. [12]

      WANG Q, JIANG N, FU B, HUANG F, LIU J. Biomater. Sci., 2019, 7(12):4888-4911.

    13. [13]

    14. [14]

    15. [15]

      HUANG X M, ZHENG Q, FANG X T, SHAO H B. J. Elecrrochem. Soc., 2018, 165(5):H240-H246.

    16. [16]

      ISLAM R, LUU H T L, KUSS S. J. Elecrrochem. Soc., 2020, 167(4):045501.

    17. [17]

      CANIGLIA G, KRANZ C. Anal. Bioanal. Chem., 2020, 412(24):6133-6148.

    18. [18]

      MELONI G N, BERTOTTI M. Electroanalysis, 2017, 29(3):787-793.

    19. [19]

    20. [20]

      PEDROSA V A, LOWINSOHN D, BERTOTTI M. Electroanalysis, 2006, 18(9):931-934.

    21. [21]

      WANG S F, DU D, ZOU Q C. Talanta, 2002, 57:687-692.

    22. [22]

      HUANG X M, CHEN J C, FANG X T, YAN C X, SHAO H B. J. Electroanal. Chem., 2019, 837:143-150.

    23. [23]

      HUANG X M, CHEN J C, YAN C X, GUO H X, SHAO H B. J. Phys. Chem. C, 2020, 124(16):8876-8884.

    24. [24]

      GERHARDT G, ADAMS R N. Anal. Chem., 1982, 54(14):2618-2620.

    25. [25]

      ZHENG Q, ZHANG J, YANG Y F, WANG X F, DING K J, SHAO H B. J. Elecrrochem. Soc., 2017, 164(2):H97-H103.

    26. [26]

      CHEN J C, HUANG X M, FANG X T, YAN C X, GAO Z M, SHAO H B. J. Electroanal. Chem., 2020, 876:114476.

    27. [27]

      ANSON F C. Anal. Chem., 1966, 38(1):54-57.

    28. [28]

      FANJUL-BOLADO P, LAMAS-ARDISANA P J, HERNANDEZ-SANTOS D, COSTA-GARCIA A. Anal. Chim. Acta, 2009, 638(2):133-138.

    29. [29]

      SUCHACZ B, WESOLOWSKI M. Anal. Methods, 2016, 8(16):3307-3315.

    30. [30]

      CHEN J C, HUANG X M, LI N, GUO H X, GAO Z M, SHAO H B. J. Phys. Chem. C, 2021, 125(1):410-418.

    31. [31]

      XIA Y R, NI W, WANG X, YU Y G, ZHENG Q, HUANG X M. J. Electroanal. Chem., 2021, 895:115470.

    32. [32]

      KACHOOSANGI R T, WILDGOOSE G G, COMPTON R G. Anal. Chim. Acta, 2008, 618(1):54-60.

    33. [33]

      LHENRY S, LEROUX Y R, HAPIOT P. Anal. Chem., 2012, 84(17):7518-7524.

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    13. [13]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    14. [14]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    15. [15]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

Metrics
  • PDF Downloads(6)
  • Abstract views(197)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return