Citation: GUAN Xin,  WU Yi,  XU Bing,  JIN Zheng-Yang,  LIANG Chong-Yang. Detection of Cytomegalovirus Based on Loop-Mediated Isothermal Amplification Combined with Surface Enhanced Raman Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 424-432. doi: 10.19756/j.issn.0253-3820.221007 shu

Detection of Cytomegalovirus Based on Loop-Mediated Isothermal Amplification Combined with Surface Enhanced Raman Spectroscopy

  • Corresponding author: LIANG Chong-Yang, liang@jlu.edu.cn
  • Received Date: 4 January 2022
    Revised Date: 18 January 2022

    Fund Project: Supported by the Science and Technology Planning Project of Jilin Province, China (No.20190304035YY).

  • Cytomegalovirus (CMV) is very harmful to patients with organ transplantation, pregnant women and newborns. At present,quantitative real-time PCR (qPCR) is the most important method for clinical detection of CMV. However, due to the high cost and complex operation of qPCR, it is difficult to be applied in rapid detection on site. Loop mediated isothermal amplification (LAMP) is a sensitive, simple and rapid nucleic acid detection technology. LAMP shows better amplification efficiency than qPCR, but it is easy to produce dimer between multiple pairs of primers, which will result in nonspecific amplification, and thus cause false positive results. In this study, two probes with complementary sequences were designed to connect magnetic beads (MNs) and silver nanoparticles (AgNPs) modified with Raman probe signal molecule 4-mercaptobenzoic acid (4-MBA). A stronger signal on the surface of AgNPs was obtained by surface enhanced Raman scattering. By using the designed method with the above principle, the standard nucleic acid sequence of CMV was detected, and the detection limit reached 1000 copies/mL. At the level of structural principle of amplification products, the false positive problem perplexing LAMP technology was solved, which showed reference value for the development of new rapid detection technology.
  • 加载中
    1. [1]

      GRIFFITHS P, BARANIAK I, REEVES M. J. Pathol., 2015, 235(2):288-297.

    2. [2]

      YADAV S K, SAIGAL S, CHOUDHARY N S, SAHA S, KUMAR N, SOIN A S. J. Clin. Exp. Hepatol., 2017, 7(2):144-151.

    3. [3]

      LIN X, LU T, LI S, XIE X, CHEN X, JIANG J, QIN Y, XIE Z, LIU M, OUYANG M, ZHONG N, SONG Y, ZHOU C. Clin. Transl. Oncol., 2021, 23(2):389-396.

    4. [4]

      WESLEY E, UPPENDAHL L D, FELICES M, DAHL C, MESSELT A, BOYLAN K L M, SKUBITZ A P N, VOGEL R I, NELSON H H, GELLER M A. Gynecol. Oncol., 2021, 160(1):193-198.

    5. [5]

      SHAKER ARDAKANI M, PAK F, KOKHAEI P, FAZELI M S, SHAKIBA Y, TABATABAEI YAZDI S M, ABBASIAN A, NOURIZADEH M. Iran. J. Allergy Asthma Immunol., 2019, 18(4):379-392.

    6. [6]

      WILSKI N A, SNYDER C M. Vaccines (Basel), 2019, 7(3):62.

    7. [7]

      LERIAS J R, PARASCHOUDI G, SILVA I, MARTINS J, DE SOUSA E, CONDECO C, FIGUEIREDO N, CARVALHO C, DODOO E, JAGER E, RAO M, MAEURER M. Int. J. Mol. Sci., 2019, 20(8):1986.

    8. [8]

      SCHLUCKER S. Angew. Chem., Int. Ed., 2014, 53(19):4756-4795.

    9. [9]

      CHU D K W, PAN Y, CHENG S M S, HUI K P Y, KRISHNAN P, LIU Y, NG D Y M, WAN C K C, YANG P, WANG Q, PEIRIS M, POON L L M. Clin. Chem., 2020, 66(4):549-555.

    10. [10]

      CORMAN V M, LANDT O, KAISER M, MOLENKAMP R, MEIJER A, CHU D K, BLEICKER T, BRUNINK S, SCHNEIDER J, SCHMIDT M L, MULDERS D G, HAAGMANS B L, VAN DER VEER B, VAN DEN BRINK S, WIJSMAN L, GODERSKI G, ROMETTE J L, ELLIS J, ZAMBON M, PEIRIS M, GOOSSENS H, REUSKEN C, KOOPMANS M P, DROSTEN C. Eurosurveillance, 2020, 25(3):2000045.

    11. [11]

      LOEFFELHOLZ M J, TANG Y W. Emerging Microbes Infect., 2020, 9(1):747-756.

    12. [12]

      PANNO S, MATIC S, TIBERINI A, CARUSO A G, BELLA P, TORTA L, STASSI R, DAVINO A S. Plants (Basel), 2020, 9(4):461.

    13. [13]

      ROY S, WEI S X, YING J L Z, SAFAVIEH M, AHMED M U. Biosens. Bioelectron., 2016, 86:346-352.

    14. [14]

      VARGA A, JAMES D. J. Virol. Methods, 2006, 138(1-2):184-190.

    15. [15]

      ZHAO L H, MA Y Y, WANG H, ZHAO S P, ZHAO W M, LI H, WANG L Y. Acta Biochim. Biophys. Sin., 2006, 38(10):731-736.

    16. [16]

      BUDZISZEWSKA M, WIECZOREK P, OBREPALSKA-STEPLOWSKA A. Arch. Virol., 2016, 161(5):1359-1364.

    17. [17]

      KOGOVŠEK P, MEHLE N, PUGELJ A, JAKOMIN T, SCHROERS H, RAVNIKAR M, DERMASTIA M. Eur. J. Plant Pathol., 2016, 148(1):75-84.

    18. [18]

      KANEKO H, KAWANA T, FUKUSHIMA E, SUZUTANI T. J. Biochem. Biophys. Methods, 2007, 70(3):499-501.

    19. [19]

      WONG Y P, OTHMAN S, LAU Y L, RADU S, CHEE H Y. J. Appl. Microbiol., 2018, 124(3):626-643.

    20. [20]

      MOEHLING T J, CHOI G, DUGAN L C, SALIT M, MEAGHER R. J. Expert Rev. Mol. Diagn., 2021, 21(1):43-61.

    21. [21]

      URRUTIA-CABRERA D, LIOU R H, WANG J H, CHAN J, HUNG S S, HEWITT A W, MARTIN K R, EDWARDS T L, KWAN P, WONG R C. Sci. Rep., 2021, 11(1):22493.

    22. [22]

      SHA M Y, XU H, NATAN M J, CROMER R. J. Am. Chem. Soc., 2008, 130(51):17214-17215.

    23. [23]

      QIAN X, PENG X H, ANSARI D O, YIN-GOEN Q, CHEN G Z, SHIN D M, YANG L, YOUNG A N, WANG M D, NIE S. Nat. Biotechnol., 2008, 26(1):83-90.

    24. [24]

      ZONG C, XU M, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    25. [25]

      LEE P C, MEISEL D. J. Phys. Chem., 1982, 86(17):3391-3395.

    26. [26]

      TANG W, ELMORE S H, FAN H, THORNE L B, GULLEYM L. Diagn. Mol. Pathol., 2008, 17(3):166.

    27. [27]

      JONAS T, EDGAR S, CHAMBARO H M, LIYWALII M, LUBABA C H, PANDEY G S, AYATO T, GERALD M, MWEENE A S. Onderstepoort J. Vet.Res., 2016, 83(1):1-5.

    28. [28]

      NAGAMINE K, HASE T, NOTOMI T. Mol. Cell. Probes, 2002, 16(3):223-229.

    29. [29]

      MCFARLAND A D, VAN DUYNE R P. Nano. Lett., 2003, 3(8):1057-1062.

    30. [30]

      PARAMELLE D, SADOVOY A, GORELIK S, FREE P, HOBLEY J, FERNIG D G. Analyst, 2014, 139(19):4855-4861.

    31. [31]

      RHEE J Y, PECK K R, LEE N Y, SONG J H. Transplant. Proc., 2011, 43(7):2624-2629.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    10. [10]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    11. [11]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    17. [17]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(8)
  • Abstract views(868)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return