Citation: WANG Chen,  LI Kai,  MIN Qian-Hao. Advances in Portable Microdevice Coupled Mass Spectrometry for Biological Detection[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1685-1698. doi: 10.19756/j.issn.0253-3820.221005 shu

Advances in Portable Microdevice Coupled Mass Spectrometry for Biological Detection

  • Corresponding author: MIN Qian-Hao, minqianhao@nju.edu.cn
  • Received Date: 13 January 2022
    Revised Date: 13 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21974062, 92053102).

  • Portable microdevice coupled mass spectrometry (MS) has shown great capability of rapid sampling and high-throughput assay of biological samples by simplifying sample pretreatment while maintaining the sensitivity and reliability of MS detection. Particularly, paper substrates, microextraction devices and microchips allow the integration of fast sampling, desalting and extraction. Mass spectrometric methods coupled with above portable microdevices show great sensitivity and selectivity in biological detections, thus facilitating their applications in therapeutic drug monitoring, endogenous substrate detection, protein and peptide detection, and bacterial identification. This review summarizes the main principles and research progress of portable microdevice coupled mass spectrometry (e.g. paper spray-MS, microextraction-MS, and microfluidic chip-MS), and also prospects their future developments and potential applications.
  • 加载中
    1. [1]

      YAMASHITA M, FENN J B. J. Phys. Chem., 1984, 88(20):4451-4459.

    2. [2]

      MIKHAIL I E, TEHRANIROKH M, GOOLEY A A, GUIJT R M, BREADMORE M C. J. Chromatogr. A, 2021, 1646:462086.

    3. [3]

      ZHANG M, LIN F, XU J, XU W. Anal. Chem., 2015, 87(6):3123-3128.

    4. [4]

      MCBRIDE E M, MACH P M, DHUMMAKUPT E S, DOWLING S, CARMANY D O, DEMOND P S, RIZZO G, MANICKE N E, GLAROS T. TrAC, Trends Anal. Chem., 2019, 118:722-730.

    5. [5]

      WANG H, LIU J, COOKS R G, OUYANG Z. Angew. Chem., Int. Ed., 2010, 49(5):877-880.

    6. [6]

      MANICKE N E, YANG Q, WANG H, ORADU S, OUYANG Z, COOKS R G. Int. J. Mass Spectrom., 2011, 300(2-3):123-129.

    7. [7]

      DENG J, WANG W, YANG Y, WANG X, CHEN B, YAO Z P, LUAN T. Anal. Chim. Acta, 2016, 940:143-149.

    8. [8]

      LI J, ZHENG Y J, MI W, MUYIZERE T, ZHANG Z P. Anal. Methods, 2018, 10(24):2803-2811.

    9. [9]

      MENDES T P P, PEREIRA I, FERREIRA M R, CHAVES A R, VAZ B G. Anal. Methods, 2017, 9(43):6117-6123.

    10. [10]

      REYES-GARCES N, GIONFRIDDO E, GOMEZ-RIOS G A, ALAM M N, BOYACI E, BOJKO B, SINGH V, GRANDY J, PAWLISZYN J. Anal. Chem., 2018, 90(1):302-360.

    11. [11]

      PIRI-MOGHADAM H, AHMADI F, GOMEZ-RIOS G A, BOYACI E, REYES-GARCES N, AGHAKHANI A, BOJKO B, PAWLISZYN J. Angew. Chem., Int. Ed., 2016, 55(26):7510-7514.

    12. [12]

      GOMEZ-RIOS G A, REYES-GARCES N, BOJKO B, PAWLISZYN J. Anal. Chem., 2016, 88(2):1259-1265.

    13. [13]

      REN Y, MCLUCKEY M N, LIU J, OUYANG Z. Angew. Chem., Int. Ed., 2014, 53(51):14124-14127.

    14. [14]

      ROY S, KIM S, YOON J H, YOON Y K, CHO K. Mass Spectrom. Lett., 2018, 9(1):1-16.

    15. [15]

      WU W, ZHANG D, CHEN K, ZHOU P, ZHAO M, QIAO L, SU B. Anal. Chem., 2018, 90(24):14395-14401.

    16. [16]

      LIM W Y, GOH B T, KHOR S M. J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2017, 1060:424-442.

    17. [17]

      ZHANG Y, LI H, MA Y, LIN J M. Analyst, 2014, 139(5):1023-1029.

    18. [18]

      SVEJDAL R R, STICKER D, SONDERBY C, KUTTER J P, RAND K D. Anal. Chim. Acta, 2020, 1140:168-177.

    19. [19]

      JÖNSSON A, LAFLEUR J P, STICKER D, KUTTER J P. Anal. Methods, 2018, 10(24):2854-2862.

    20. [20]

      CHEN S, WAN Q, BADU-TAWIAH A K. J. Am. Chem. Soc., 2016, 138(20):6356-6359.

    21. [21]

      GOMEZ-RIOS G A, LIU C, TASCON M, REYES-GARCES N, ARNOLD D W, COVEY T R, PAWLISZYN J. Anal. Chem., 2017, 89(7):3805-3809.

    22. [22]

      NAZDRAJIC E, TASCON M, RICKERT D A, GOMEZ-RIOS G A, KULASINGAM V, PAWLISZYN J B. Anal. Chim. Acta, 2021, 1144:53-60.

    23. [23]

      LOOBY N T, TASCON M, ACQUARO V R, REYES-GARCES N, VASILJEVIC T, GOMEZ-RIOS G A, WASOWICZ M, PAWLISZYN J. Analyst, 2019, 144(12):3721-3728.

    24. [24]

      TASCON M, ALAM M N, GOMEZ-RIOS G A, PAWLISZYN J. Anal. Chem., 2018, 90(4):2631-2638.

    25. [25]

      TANG H, YU Q, QIAN X, NI K, WANG X. Micromachines (Basel), 2018, 9(5):212-214.

    26. [26]

      ESPY R D, MANICKE N E, OUYANG Z, COOKS R G. Analyst, 2012, 137(10):2344-2349.

    27. [27]

      SHI R Z, ELGIERARI EL T M, MANICKE N E, FAIX J D. Clin. Chim. Acta, 2015, 441:99-104.

    28. [28]

      LI L, CHEN T C, REN Y, HENDRICKS P I, COOKS R G, OUYANG Z. Anal. Chem., 2014, 86(6):2909-2916.

    29. [29]

      SALENTIJN G I, PERMENTIER H P, VERPOORTE E. Anal. Chem., 2014, 86(23):11657-11665.

    30. [30]

      SALENTIJN G I, OLESCHUK R D, VERPOORTE E. Anal. Chem., 2017, 89(21):11419-11426.

    31. [31]

      YANG B C, FANG S F, WAN X J, LUO Y, ZHOU J Y, LI Y, LI Y J, WANG F, HUANG O P. Anal. Chim.Acta, 2017, 973:68-74.

    32. [32]

      HU B, ZHENG B, RICKERT D, GOMEZ-RIOS G A, BOJKO B, PAWLISZYN J, YAO Z P. Anal. Chim. Acta, 2019, 1075:112-119.

    33. [33]

      WANG C H, SU H, CHOU J H, HUANG M Z, LIN H J, SHIEA J. Anal. Chim. Acta, 2018, 1021:60-68.

    34. [34]

      MIRNAGHI F S, PAWLISZYN J. Anal. Chem., 2012, 84(19):8301-8309.

    35. [35]

      REYES-GARCES N, BOJKO B, HEIN D, PAWLISZYN J. Anal. Chem., 2015, 87(19):9722-9730.

    36. [36]

      TASCON M, GOMEZ-RIOS G A, REYES-GARCES N, POOLE J, BOYACI E, PAWLISZYN J. Anal. Chem., 2017, 89(16):8421-8428.

    37. [37]

      THIRUKUMARAN M, SINGH V, ARAO Y, FUJITO Y, NISHIMURA M, OGURA T, PAWLISZYN J. Talanta, 2021, 231:122317.

    38. [38]

      NEWSOME G A, KAVICH G, ALVAREZ-MARTIN A. Anal. Chem., 2020, 92(6):4182-4186.

    39. [39]

      REN Y, ZHANG W, LIN Z, BUSHMAN L R, ANDERSON P L, OUYANG Z. Talanta, 2018, 189:451-457.

    40. [40]

      ZHANG C, MANICKE N E. Anal. Chem., 2015, 87(12):6212-6219.

    41. [41]

      FERNANDES A, BERNARDO R, CARVALHO T, VAZ B, CHAVES A. J. Braz. Chem. Soc., 2019, 30(5):1074-1081.

    42. [42]

      KWON W, KIM J Y, SUH S, IN M K. Forensic Sci. Int., 2012, 221(1-3):57-64.

    43. [43]

      ACQUARO V R, GOMEZ-RIOS G A, TASCON M, QUEIROZ M E C, PAWLISZYN J. Anal. Chim. Acta, 2019, 1091:135-145.

    44. [44]

      WU L, YUAN Z C, YANG B C, HUANG Z, HU B. Anal. Chim. Acta, 2021, 1164:338510-338516.

    45. [45]

      JENDER M, NOVO P, MAEHLER D, MUNCHBERG U, JANASEK D, FREIER E. Anal. Chem., 2020, 92(9):6764-6769.

    46. [46]

      MEURS J, SCURR D J, LOURDUSAMY A, STORER L C D, GRUNDY R G, ALEXANDER M R, RAHMAN R, KIM D H. Anal. Chem., 2021, 93(18):6947-6954.

    47. [47]

      CHENG M, SHU H, PENG Y, FENG X, YAN G, ZHANG L, YAO J, BAO H, LU H. Anal. Chem., 2021, 93(13):5537-5546.

    48. [48]

      HAN F, YANG Y, OUYANG J, NA N. Analyst, 2015, 140(3):710-715.

    49. [49]

      ZHANG Y, JU Y, HUANG C, WYSOCKI V H. Anal. Chem., 2014, 86(3):1342-1346.

    50. [50]

      HU B, SO P K, CHEN H, YAO Z P. Anal. Chem., 2011, 83(21):8201-8207.

    51. [51]

      WICHERT W R A, DHUMMAKUPT E S, ZHANG C, MACH P M, BERNHARDS R C, GLAROS T, MANICKE N E. J. Am. Soc. Mass Spectrom., 2019, 30(8):1406-1415.

    52. [52]

      ZHAO Y, GONG X, SI X, WEI Z, YANG C, ZHANG S, ZHANG X. Analyst, 2015, 140(8):2599-2602.

    53. [53]

      ZHANG C, GLAROS T, MANICKE N E. J. Am. Chem. Soc., 2017, 139(32):10996-10999.

    54. [54]

      LIN Y H, CHANG H Y, WU C C, WU C W, CHANG K P, YU J S. Anal. Bioanal. Chem., 2019, 411(5):1085-1094.

    55. [55]

      SVEJDAL R R, DICKINSON E R, STICKER D, KUTTER J P, RAND K D. Anal. Chem., 2019, 91(2):1309-1317.

    56. [56]

      ZHONG X, QIAO L, STAUFFER G, LIU B, GIRAULT H H. J. Am. Soc. Mass Spectrom., 2018, 29(7):1538-1545.

    57. [57]

      SHEN Y, YI J, SONG M, LI D, WU Y, LIU Y J, YANG M, QIAO L. Analyst, 2021, 146:4146-4153.

    58. [58]

      HAMID A M, WEI P, JARMUSCH A K, PIRRO V, COOKS R G. Int. J. Mass Spectrom., 2015, 378(13):288-293.

    59. [59]

      KERIAN K S, JARMUSCH A K, COOKS R G. Analyst, 2014, 139(11):2714-2720.

    60. [60]

      BASURI P, DAS S, JENIFER S K, JANA S K, PRADEEP T. J. Am. Soc. Mass Spectrom., 2021, 32(1):355-363.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    11. [11]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    13. [13]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    17. [17]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    20. [20]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

Metrics
  • PDF Downloads(8)
  • Abstract views(635)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return