Citation:
ZHENG Min-Yang, LU Gang, LI Yang, ZHANG Zhen-Bin, ZHAO Yu-Fen. Recent Development in Mass-limited Sample Preparation Methods for Proteomics[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(9): 1279-1288.
doi:
10.19756/j.issn.0253-3820.221004
-
Sample preparation methods determine the sensitivity and quantitative accuracy of proteomics analysis, especially for mass-limited proteomics sample. Traditional preparation methods of proteomic sample, such as in-solution digestion and filter aided sample preparation (FASP) method, generally require large amount of starting materials due to the significant sample loss, and thus is not suitable for the qualitative and quantitative analysis of mass-limited samples, such as small number of subcellular cells, biopsy samples, single cells, et al. To overcome this problem, it is urgent to develop sample preparation methods for microgram or even nanogram of starting materials. This paper reviewed various mass-limited sample preparation methods that based on different mechanisms, such as in-StageTip, single-pot solid-phase-enhanced sample preparation (SP3), integrated proteome analysis device (iPAD), simple and integrated spintip-based proteomics technology (SISPROT), fully automated sample treatment (FAST), miniaturized filter-aided sample preparation (MICROFASP) and so on. The development trends in the future were also envisioned.
-
Keywords:
- Sample preparation methods,
- Mass-limited sample,
- Proteomics,
- Integration,
- Review
-
-
-
[1]
ASLAM B, BASIT M, NISAR M A, KHURSHID M, RASOOL M H. J. Chromatogr. Sci., 2017, 55(2):182-196.
-
[2]
WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat. Methods, 2009, 6(5):359-362.
-
[3]
LIEBLER D C, HAM A J. Nat. Methods, 2009, 6(11):785.
-
[4]
ERDE J, LOO R R, LOO J A. J. Proteome Res., 2014, 13(4):1885-1895.
-
[5]
ZHAO Q, FANG F, WU C, WU Q, LIANG Y, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chim. Acta, 2016, 912:58-64.
-
[6]
NDIAYE M M, TA H P, CHIAPPETTA G, VINH J. J. Proteome Res., 2020, 19(7):2654-2663.
-
[7]
ZHANG Z B, DUBIAK K M, HUBER P W, DOVICHI N J. Anal. Chem., 2020, 92(7):5554-5560.
-
[8]
ZHANG Z B, DUBIAK K M, SHISHKOVA E, HUBER P W, COON J J, DOVICHI N J. Anal. Chem., 2022, 94(7):3254-3259.
-
[9]
WANG N, XU M G, WANG P, LI L. Anal. Chem., 2010, 82(6):2262-2271.
-
[10]
KULAK N A, PICHLER G, PARON I, NAGARAJ N, MANN M. Nat. Methods, 2014, 11(3):319-324.
-
[11]
GEYER P E, HOLDT L M, TEUPSER D, MANN M. Mol. Syst. Biol., 2017, 13(9):942.
-
[12]
KOSTAS J C, GREGUS M, SCHEJBAL J, RAY S, IVANOV A R. J. Proteome Res., 2021, 20(3):1676-1688.
-
[13]
CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal. Chem., 2015, 87(13):6674-6680.
-
[14]
CHEN Q, YAN G Q, GAO M X, ZHANG X M. Anal.Bioanal. Chem., 2015, 407(3):1027-1032.
-
[15]
MILLER A J, YU Q H, CZERWINSKI M, TSAI Y H, CONWAY R F, WU A, HOLLOWAY E M, WALKER T, GLASS I A, TREUTLEIN B, CAMP J G, SPENCE J R. Dev. Cell, 2020, 53(1):117-128.
-
[16]
BUETTNER F, NATARAJAN K N, CASALE F P, PROSERPIO V, SCIALDONE A, THEIS F J, TEICHMANN S A, MARIONI J C, STEGIE O. Nat. Biotechnol., 2015, 33(2):155-160.
-
[17]
DOERR A. Nat. Methods, 2019, 16(1):20.
-
[18]
SHAO X, WANG X T, GUAN S, LIN H Z, YAN G Q, GAO M X, DENG C H, ZHANG X M. Anal. Chem., 2018, 90(23):14003-14010.
-
[19]
LI Z Y, HUANG M, WANG X K, ZHU Y, LI J S, WONG C C L, FANG Q. Anal. Chem., 2018, 90(8):5430-5438.
-
[20]
ZHU Y, PIEHOWSKI P D, ZHAO R, CHEN J, SHEN Y F, MOORE R J, SHUKLA A K, PETYUK V A, CAMPBELL-THOMPSON M, MATHEWS C E, SMITH R D, QIAN W J, KELLY R T. Nat. Commun., 2018, 9:882.
-
[21]
XU K R, LIANG Y R, PIEHOWSKI P D, DOU M W, SCHWARZ K C, ZHAO R, SONTAG R L, MOORE R J, ZHU Y, KELLY R T. Anal. Bioanal. Chem., 2019, 411(19):4587-4596.
-
[22]
ROSEVEAR P, VANAKEN T, BAXTER J, FERGUSON-MILLER S. Biochemistry, 1980, 19(17):4108-4115.
-
[23]
ETHIER M, HOU W M, DUEWEL H S, FIGEYS D. J. Proteome Res., 2006, 5(10):2754-2759.
-
[24]
TIAN R J, WANG S A, ELISMA F, LI L, ZHOU H, WANG L S, FIGEYS D. Mol. Cell. Proteomics, 2011, 10(2):M110.000679.
-
[25]
ZHANG Z B, WANG F J, XU B, QIN H Q, YE M L, ZOU H F. J. Chromatogr. A, 2012, 1256:136-143.
-
[26]
-
[27]
ZHANG Z B, SUN L L, ZHU G J, COX O F, HUBER P W, DOVICHI N J. Anal. Chem., 2016, 88(1):877-882.
-
[28]
ZHAO Q, LIANG Y, YUAN H M, SUI Z G, WU Q, LIANG Z, ZHANG L H, ZHANG Y K. Anal. Chem., 2013, 85(18):8507-8512.
-
[29]
HUGHES C S, FOEHR S, GARFIELD D A, FURLONG E E, STEINMETZ L M, KRIJGSVELD J. Mol. Syst. Biol., 2014, 10(10):757.
-
[30]
HUGHES C S, MOGGRIDGE S, MULLER T, SORENSEN P H, MORIN G B, KRIJGSVELD J. Nat. Protoc., 2019, 14(1):68-85.
-
[31]
MULLER T, KALXDORF M, LONGUESPEE R, KAZDAL D N, STENZINGER A, KRIJGSVELD J. Mol. Syst. Biol., 2020, 16(1):e9111.
-
[32]
YANG Z C, ZHANG Z R, CHEN D Y, XU T, WANG Y, SUN L L. Anal. Chem., 2021, 93(30):10568-10576.
-
[33]
HATA K, IZUMI Y, HARA T, MATSUMOTO M, BAMBA T. Anal. Chem., 2020, 92(4):2997-3005.
-
[34]
CHEN W D, WANG S, ADHIKARI S, DENG Z H, WANG L J, CHEN L, KE M, YANG P Y, TIAN R J. Anal. Chem., 2016, 88(9):4864-4871.
-
[35]
CHEN W D, ADHIKARI S, CHEN L, LIN L, LI H, LUO S S, YANG P Y, TIAN R J. J. Chromatogr. A, 2017, 1498:207-214.
-
[36]
-
[37]
ZOUGMAN A, SELBY P J, BANKS R E. Proteomics, 2014, 14(9):1006-1010.
-
[38]
YUAN H M, DAI Z P, ZHANG X D, ZHAO B F, CHU H W, ZHANG L H, ZHANG Y K. Sci. China:Chem., 2021, 64(2):313-321.
-
[39]
YANG J S, QIAO J, KIM J Y, ZHAO L P, QI L, MOON M H. Anal. Chem., 2018, 90(5):3124-3131.
-
[40]
LU X, WANG Z K, GAO Y, CHEN W D, WANG L J, HUANG P W, GAO W N, KE M, HE A, TIAN R J. Anal. Chem., 2020, 92(13):8893-8900.
-
[1]
-
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[3]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[4]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[5]
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
-
[6]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[7]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[8]
Zhaohu Li , Weidong Wang , Yuhao Liu , Mingzhe Han , Lingling Wei , Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090
-
[9]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[10]
Lisen Sun , Yongmei Hao , Zhen Huang , Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063
-
[11]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[12]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[13]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[14]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[15]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[16]
Sifang Zhang , Yanli Tan , Yu Tao , Jiaoyan Zhao , Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067
-
[17]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[18]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[19]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[20]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[1]
Metrics
- PDF Downloads(6)
- Abstract views(194)
- HTML views(16)