Citation: WU Yan,  GUO Jun,  WANG Yue-nan,  WEI Hang,  SHAO Dong-rui. Identification and Analysis on Flavor Compounds of Raw Milk of Six Kinds of Livestocks by Proton Transfer Reaction-Time of Flight-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 643-658. doi: 10.19756/j.issn.0253-3820.221003 shu

Identification and Analysis on Flavor Compounds of Raw Milk of Six Kinds of Livestocks by Proton Transfer Reaction-Time of Flight-Mass Spectrometry

  • Corresponding author: GUO Jun, guojunge@imau.edu.cn
  • Received Date: 3 January 2022
    Revised Date: 22 March 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 31760489)

  • Flavor compounds of livestock milk mainly include acids, esters, ketones, aldehydes and alkanes, however the composition of flavor compound of each animal milk may related to species, forage, metabolism disorder, as well other complicated factors. In this study, a total of 53 raw milk samples of Mongolia horse, Bactrian camel, Holstein cow, Saanen goat, Maiwa yak and Murrah buffalo were collected. Flavor compounds of raw milk were determined and identified by proton transfer reaction-time of flight-mass spectrometry(PTR-TOF-MS), and multivariate statistical analysis was conducted to observe the natural clustering characteristics of six kinds of livestock milk by their flavor compounds. SIMCA and PCA-Class discrimination model were constructed to evaluate the feasibility of authentication on species, geographical origin/local varieties of raw milk by their flavor compounds. As results, there were 27, 23, 16, 21, 21 and 18 kinds of flavor compounds identified in the raw milk of Mongolia horse, Bactrian camel, Holstein cow, Saanen goat, Maiwa yak and Murrah buffalo, respectively, mainly were ketones, acids, aldehydes, alcohols and sulfur compounds. Multivariate statistical analysis showed that six kinds of livestock raw milk were clustered into six groups and the clustering distance consistent with taxonomy of these species. Mongolia horse and Bactrian camel milk clusters were both separated by geographical origins. Alxa camels and Xinjiang camel milk clusters from same origin were separated but did not influence original separation. Six species of raw milk of livestock were identified, and the accuracy of external verification of SIMCA and PCA-class model were 92.72% and 98.38% respectively. The external verification accuracy of Mongolian horse milk and Bactrian camel milk from different geographical regions and local varieties were above 83.00%. The results showed that the authentication of species, geographical origin/local varieties of animal milk by flavor compounds or MS fingerprint modeling was promising. The study introduced another innovative strategy and methodology to authentication of species, geographical origin/local varieties of animal milk.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      CHI X L, SHAO Y W, PAN M H, YANG Q Y, YANG Y, ZHANG X M, AI N S, SUN B G. Eur. Food Res.Technol., 2021, 247(6):1539-1551.

    5. [5]

      HUANG G X, LI N, LIU K Z, YANG J Y, ZHAO S G, ZHENG N, ZHOU J H, ZHANG Y D, WANG J Q. Front.Nutr., 2022, 9:831178.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      AI N S, LIU H L, WANG J, ZHANG X M, ZHANG H J, CHEN H T, HUANG M Q, LIU Y G, ZHENG F P, SUN B G. Anal. Methods, 2015, 7(10):4278-4284.

    10. [10]

    11. [11]

      SFAKIANAKIS P, TZIA C. Int. Dairy J., 2017, 75:120-128.

    12. [12]

    13. [13]

      VAUTZ W, HARIHARAN C, WEIGEND M. Ecol. Evol., 2018, 8(9):4370-4377.

    14. [14]

    15. [15]

      YIN J X, WU M F, LIN R M, LI X, DING H, HAN L F, YANG W Z, SONG X B, LI W L, QU H B, YU H S, LI Z.Microchem. J., 2021, 168:106527.

    16. [16]

      BIASIOLI F, GASPERI F, YERETZIAN C, MARK T D. TrAC-Trends Anal Chem., 2011, 30(7):968-977.

    17. [17]

      SULZER P, EDTBAUER A, HARTUNGEN E, JURSCHIK S, JORDAN A, HANEl G, FEIL S, JAKSCH S,MARK L, MARK T D. Int. J. Mass Spectrom., 2012, 321:66-70.

    18. [18]

      JORDAN A, HAIDACHER S, HANEL G, HARTUNGEN E, MARK L, SEEHAUSER H, SCHOTTKOWSKY R,SULZ ER P, MARK T D. Int. J. Mass Spectrom., 2009, 286(2-3):122-128.

    19. [19]

      WANG X, CAI Y, WANG J, ZHAO Y F. Atmos. Environ., 2021, 245:118045.

    20. [20]

      TELAGATHOTI A, PROBST M, KHOMENKO I, BIASIOLI F, PEINTNER U. J. Fungi, 2021, 7(1):66.

    21. [21]

      WHITE I R, BLAKE R S, TAYLOR A J, MONKS P S. Metabolomics, 2016, 12(3):57.

    22. [22]

      ZANIN R C, SMRKE S, KUROZAWA L E, YAMASHITA F, YERETZIAN C. Food Chem., 2020, 317:126455.

    23. [23]

      ZHU L, SCHADE G W, NIELSEN C J. Environ. Sci. Technol., 2013, 47(24):14306-14314.

    24. [24]

      PEDERSEN J, NYORD T, HANSEN M J, FEILBERG A. Sci. Total Environ., 2021, 767:144175.

    25. [25]

      ARAGHIPOUR N, COLINEAU J, KOOT A, AKKERMANS W, ROJAS J M M, BEAUCHAMP J, WISTHALER A,MARK T D, DOWNEY G, GUILLOU C, MANNINA L, RUTH S V. Food Chem., 2008, 108(1):374-383.

    26. [26]

      SILVIS I, LUNING P A, KLOSE N, JANSEN M, VAN R S M. Food Chem., 2019, 271:318-327.

    27. [27]

      BOTTIROLI R, PEDROTTI M, APREA E, BIASIOLI F, FOGLIANO V, GASPERI F. J. Mass Spectrom., 2020,55(11):e4505.

    28. [28]

      SOARES R A N, VARGAS G, DUFFIELD T, SCHENKEL F, SQUIRES E J. J. Dairy Sci., 2021, 104(9):10076-10089.

    29. [29]

  • 加载中
    1. [1]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    2. [2]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    6. [6]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    9. [9]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    10. [10]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    16. [16]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(19)
  • Abstract views(595)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return