Citation: ZHU Si-Cong,  GAO Xi-Ya,  ZHANG Zhu-Shan-Ying,  CAO Hui-Min,  ZHENG Dong-Yun,  ZHANG Li,  XIE Qin-Lan,  SA Ji-Ming. Partitioning Proportion and Pretreatment Method of Infrared Spectral Dataset[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1415-1424. doi: 10.19756/j.issn.0253-3820.221001 shu

Partitioning Proportion and Pretreatment Method of Infrared Spectral Dataset

  • Corresponding author: ZHANG Zhu-Shan-Ying, syzhu@mail.scuec.edu.cn
  • Received Date: 2 January 2022
    Revised Date: 7 June 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.61501526, 61178087) and the Fundamental Research Funds for the Central Universities, South-Central MinZu University (No.CZQ22006).

  • Hemoglobin is an important physiological index of human body. Abnormal concentration of hemoglobin will lead to various diseases. Near infrared spectroscopy can be use to detect hemoglobin content in human body quickly and without reagent. However, the infrared spectrum overlaps seriously, the effective information is low, and it is vulnerable to external noise. Therefore, it is usually necessary to divide and pretreat the spectral data, and then establish quantitative model, so as to remove the adverse effects of interference information on the prediction model. But how to choose the best partition method and the best partition proportion and how to choose the best pretreatment methods are still problems. To solve these issues, by taking the spectral data of 190 blood samples with different concentrations of hemoglobin and 150 imitation solution samples with different concentrations of hemoglobin as the research object, partial least squares (PLS) model predictability with different dataset partitioning methods including equal interval division method, kennard stone(K_S), sample set partitioning based on joint X-Y distances method (SPXY) and duplex algorithm (Duplex) under 41 different partitioning proportions were studied in this work. Pretreatments including wavelet transform (WT), standard normal variable (SNV), direct orthogonal signal correction (DOSC), and S_G (savitzky Golay) first-order derivation form 65 pretreatment combinations (considering order), and the influence of these 65 pretreatment combinations on the prediction accuracy of PLS quantitative analysis model were studied. Experimental results indicated that the optimal dataset partitioning method of PLS model of the two datasets was SPXY method, in which the optimal division proportion of blood sample was 0.48, and the optimal division proportion of imitation solution was 0.90. Among the 65 pretreatment methods, the best pretreatment combination of blood samples was S_G1+WT, in which the correlation coefficient of prediction set (Rp) was 0.9808, and the root mean square error of prediction set (RMSEP) was 0.2701. The best pretreatment combination of imitation solution samples was SNV+WT, in which the Rp was 0.9952 and the RMSEP was 3.8154. The superposition of two algorithms showed better denoising effect. The research results provided an idea and method for the processing of this kind of spectral data.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      FU H Y, LI H D, XU L, YIN Q B, YANG T M, NI C, CAI C B, YANG J, SHE Y B. Food Chem., 2017, 227:322-328.

    5. [5]

      LONG W J, HU Z K, WEI L N, CHEN H Y, LIU T K, WANG S Y, GUAN Y T, YANG X L, YANG J, FU H Y. Spectrochim. Acta, Part A, 2022, 271:120932.

    6. [6]

      HUBER M, KEPESIDIS K V, VORONINA L, BOZIC M, TRUBETSKOV M, HARBECK N, KRAUSZ F, ZIGMAN M. Nat. Commun., 2021, 12(1):1511.

    7. [7]

    8. [8]

    9. [9]

      GAO T, HU L N, JIA Z Z, XIA T N, CHAO F, LI H Z, HU L H, LU Y H, LI H. Cluster Computing, 2019, 22(2):3069-3078.

    10. [10]

      TIAN H, ZHANG L N, LI M, WANG Y, SHENG D G, LIU J, WANG C M. Infrared Phys. Technol., 2019, 102(1):103003.

    11. [11]

    12. [12]

      ENGEL J, GERRETZEN J, SZYMANSKA E, JANSEN J J, DOWNEY G, BLANCHET L, BUYDENS L M C. TrAC, Trends Anal. Chem., 2013, 50:96-106.

    13. [13]

      RINNAN S, BERG F, ENGELSEN S B. TrAC, Trends Anal. Chem., 2009, 28(10):1201-1222.

    14. [14]

      GERRETZEN J, SZYMANSKA E, BART J, DAVIES A N, MANEN H J, HEUVEL E R, JANSEN J J, BUYDENS L M C. Anal. Chem. Acta, 2016, 938:44-52.

    15. [15]

    16. [16]

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    8. [8]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    9. [9]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    14. [14]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    15. [15]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    18. [18]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    19. [19]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    20. [20]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

Metrics
  • PDF Downloads(6)
  • Abstract views(380)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return