Citation: YANG Yang,  GAO Shou-Hong,  ZHANG Feng,  ZHONG Ren-Qian,  WANG Zhi-Peng,  CHEN Wan-Sheng. Simultaneous Determination of 32 Kinds of Amino Acids in Plasma from Colorectal Cancer Patients Based on Targeted Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1083-1092. doi: 10.19756/j.issn.0253-3820.211255 shu

Simultaneous Determination of 32 Kinds of Amino Acids in Plasma from Colorectal Cancer Patients Based on Targeted Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: WANG Zhi-Peng,  CHEN Wan-Sheng, 
  • Received Date: 27 March 2021
    Revised Date: 31 March 2022

    Fund Project: Supported by the International Science and Technology Cooperation and Communication Special Fund of China (No.2015DFA31810), the Scientific Research Fund of Shanghai Science and Technology Committee (No.17411972400), the Science and Technology Talent Development Project of CPLA Army, and the Xuzhou Medical Young Talent Project.

  • A targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of 32 kinds of amino acids in plasma from colorectal cancer (CRC) patients. The chromatographic separation was performed on an Agilent Zorbax SB-C18 column (150 mm×3.0 mm, 5 μm) with a binary gradient elution system (Mobile phase A:0.02% heptafluorobutyric acid and 0.2% formic acid in water; mobile phase B:methanol). The run time was 10 min. The multiple reaction monitoring mode was chosen with an electrospray ionization source operating in the positive ionization mode for data acquisition. The sample was pretreated based on protein precipitation. The average recoveries and matrix effects for 32 kinds of amino acids and 3 kinds of internal standards were 50.4%-182.4% and 41.0%-136.4%, respectively. The linear correlation coefficients were above 0.99 for 32 kinds amino acids. The intra- and inter-day accuracy for 32 kinds of amino acids ranged from -14.3% to 13.7% (RSD ≤ 8.8%) and from -14.4% to 13.4% (RSD ≤ 12.2%), respectively, and the deviations of stability under different conditions were within ±15%. This method was successfully utilized to quantify 32 kinds of amino acids in plasma samples from 6 CRC patients simultaneously.
  • 加载中
    1. [1]

      FERLAY J, COLOMBET M, SOERJOMATARAM I, PARKIN D M, PIÑEROS M, ZNAOR A, BRAY F. Int. J. Cancer, 2021, 149(4):778-789.

    2. [2]

      LIU S Z, ZHENG R S, ZHANG M, ZHANG S W, SUN X B, CHEN W Q. Chin. J. Cancer Res., 2015, 27(1):22-28.

    3. [3]

    4. [4]

      BEZABEH T, SOMORJAI R, DOLENKO B, BRYSKINA N, LEVIN B, BERNSTEIN C N, JEYARAJAH E, STEINHART A H, RUBIN D T, SMITH I C.NMR Biomed., 2009, 22(6):593-600.

    5. [5]

      FLETCHER R H. Ann. Intern. Med., 1986, 104(1):66-73.

    6. [6]

      KRONBORG O, FENGER C, OLSEN J, JØRGENSEN O D, SØNDERGAARD O. Lancet, 1996, 348(9040):1467-1471.

    7. [7]

      QIU Y P, CAI G X, SU M M, CHEN T L, LIU Y M, XU Y, NI Y, ZHAO A H, CAI S J, XU L X, JIA W. J. Proteome Res., 2010, 9(3):1627-1634.

    8. [8]

      PINSKY P F, SCHOEN R E. JAMA Intern. Med., 2015, 175(5):858-860.

    9. [9]

      HANAHAN D, WEINBERG R A. Cell, 2000, 100(1):57-70.

    10. [10]

      HENRY C M. Chem. Eng. News, 2002, 80(48):66-70.

    11. [11]

      NI Y, XIE G X, JIA W. J. Proteome Res., 2014, 13(9):3857-3870.

    12. [12]

      NISHIUMI S, KOBAYASHI T, IKEDA A, YOSHIE T, KIBI M, IZUMI Y, OKUNO T, HAYASHI N, KAWANO S, TAKENAWA T, AZUMA T, YOSHIDA M. PLoS One, 2012, 7(7):e40459.

    13. [13]

      ZHU J J, DENG L L, GU H W, HIMMATI F, CHIOREAN E G, RAFTERY D. J. Proteome Res., 2014, 13(9):4120-4130.

    14. [14]

      KLEPACKI J, KLAWITTER J, KLAWITTER J, KARIMPOUR-FARD A, THURMAN J, INGLE G, PATEL D, CHRISTIANS U. Clin. Biochem., 2016, 49(13-14):955-961.

    15. [15]

    16. [16]

    17. [17]

      YANG Z L, LI H, WANG B, LIU S Y. J. Chromatogr. B, 2016, 1012-1013:79-88.

    18. [18]

      CALDERÓN-SANTIAGO M, PRIEGO-CAPOTE F, GALACHE-OSUNA J G, DE CASTRO M D L. J. Pharmaceut. Biomed. Anal., 2012, 70:476-484.

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      WANG Q H, WEN Y, XIA T Y, XIONG X J, GAO S H, YOU C H, TAO X, ZHANG F, CHEN W S. Bioanalysis, 2016, 8(13):1337-1351.

    24. [24]

      XIA T Y, FU S X, WANG Q H, WEN Y, CHAN S A, ZHU S, GAO S H, TAO X, ZHANG F, CHEN W S. Biomed. Chromatogr., 2018, 32(5):e4198.

    25. [25]

      YANG Y, ZHANG F, GAO S H, WANG Z P, LI M M, WEI H, ZHONG R Q, CHEN W S. J. Anal. Methods Chem., 2020, 2020:4641709.

    26. [26]

      VAN DE MERBEL N C. TrAC-Trends Anal. Chem., 2008, 27(10):924-933.

    27. [27]

      ZHANG S, JIAN W Y, SULLIVAN S, SANKARAN B, EDOM R W, WENG N D, SHARKEY D. J. Chromatogr. B, 2014, 961(2):62-70.

    28. [28]

      SUGIMOTO H, KAKEHI M, JINNO F. Anal. Biochem., 2015, 487(14):38-44.

    29. [29]

      FURTADO D Z S, DE MOURA LEITE F B V, BARRETO C N, FARIA B, JEDLICKA L D L, SILVA E J, SILVA H D T, BECHARA E J H, ASSUNÇÃO N A. J. Pharmaceut. Biomed., 2017, 140:137-145.

    30. [30]

      ROY C, TREMBLAY P Y, BIENVENU J F, AYOTTE P. J. Chromatogr. B, 2016, 1027:40-49.

    31. [31]

      VISWANATHAN C T, BANSAL S, BOOTH B, DESTEFANO A J, ROSE M J, SAILSTAD J, SHAH V P, SKELLY J P, SWANN P G, WEINER R. AAPS J., 2007, 9(1):E30-E42.

    32. [32]

    33. [33]

      MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Anal. Chem., 2003, 75(13):3019-3030.

  • 加载中
    1. [1]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Qian Wu Yuanxia Lv Zixuan Guo Zhihao Zhao Zhimin Zhang Hongmei Lu . A Case Study and Practice of Research-Oriented Comprehensive Instrumental Analysis Laboratory Courses. University Chemistry, 2025, 40(10): 194-202. doi: 10.12461/PKU.DXHX202411063

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    6. [6]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    7. [7]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(19)
  • Abstract views(1154)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return