Citation: YANG Yang,  GAO Shou-Hong,  ZHANG Feng,  ZHONG Ren-Qian,  WANG Zhi-Peng,  CHEN Wan-Sheng. Simultaneous Determination of 32 Kinds of Amino Acids in Plasma from Colorectal Cancer Patients Based on Targeted Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1083-1092. doi: 10.19756/j.issn.0253-3820.211255 shu

Simultaneous Determination of 32 Kinds of Amino Acids in Plasma from Colorectal Cancer Patients Based on Targeted Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: WANG Zhi-Peng,  CHEN Wan-Sheng, 
  • Received Date: 27 March 2021
    Revised Date: 31 March 2022

    Fund Project: Supported by the International Science and Technology Cooperation and Communication Special Fund of China (No.2015DFA31810), the Scientific Research Fund of Shanghai Science and Technology Committee (No.17411972400), the Science and Technology Talent Development Project of CPLA Army, and the Xuzhou Medical Young Talent Project.

  • A targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of 32 kinds of amino acids in plasma from colorectal cancer (CRC) patients. The chromatographic separation was performed on an Agilent Zorbax SB-C18 column (150 mm×3.0 mm, 5 μm) with a binary gradient elution system (Mobile phase A:0.02% heptafluorobutyric acid and 0.2% formic acid in water; mobile phase B:methanol). The run time was 10 min. The multiple reaction monitoring mode was chosen with an electrospray ionization source operating in the positive ionization mode for data acquisition. The sample was pretreated based on protein precipitation. The average recoveries and matrix effects for 32 kinds of amino acids and 3 kinds of internal standards were 50.4%-182.4% and 41.0%-136.4%, respectively. The linear correlation coefficients were above 0.99 for 32 kinds amino acids. The intra- and inter-day accuracy for 32 kinds of amino acids ranged from -14.3% to 13.7% (RSD ≤ 8.8%) and from -14.4% to 13.4% (RSD ≤ 12.2%), respectively, and the deviations of stability under different conditions were within ±15%. This method was successfully utilized to quantify 32 kinds of amino acids in plasma samples from 6 CRC patients simultaneously.
  • 加载中
    1. [1]

      FERLAY J, COLOMBET M, SOERJOMATARAM I, PARKIN D M, PIÑEROS M, ZNAOR A, BRAY F. Int. J. Cancer, 2021, 149(4):778-789.

    2. [2]

      LIU S Z, ZHENG R S, ZHANG M, ZHANG S W, SUN X B, CHEN W Q. Chin. J. Cancer Res., 2015, 27(1):22-28.

    3. [3]

    4. [4]

      BEZABEH T, SOMORJAI R, DOLENKO B, BRYSKINA N, LEVIN B, BERNSTEIN C N, JEYARAJAH E, STEINHART A H, RUBIN D T, SMITH I C.NMR Biomed., 2009, 22(6):593-600.

    5. [5]

      FLETCHER R H. Ann. Intern. Med., 1986, 104(1):66-73.

    6. [6]

      KRONBORG O, FENGER C, OLSEN J, JØRGENSEN O D, SØNDERGAARD O. Lancet, 1996, 348(9040):1467-1471.

    7. [7]

      QIU Y P, CAI G X, SU M M, CHEN T L, LIU Y M, XU Y, NI Y, ZHAO A H, CAI S J, XU L X, JIA W. J. Proteome Res., 2010, 9(3):1627-1634.

    8. [8]

      PINSKY P F, SCHOEN R E. JAMA Intern. Med., 2015, 175(5):858-860.

    9. [9]

      HANAHAN D, WEINBERG R A. Cell, 2000, 100(1):57-70.

    10. [10]

      HENRY C M. Chem. Eng. News, 2002, 80(48):66-70.

    11. [11]

      NI Y, XIE G X, JIA W. J. Proteome Res., 2014, 13(9):3857-3870.

    12. [12]

      NISHIUMI S, KOBAYASHI T, IKEDA A, YOSHIE T, KIBI M, IZUMI Y, OKUNO T, HAYASHI N, KAWANO S, TAKENAWA T, AZUMA T, YOSHIDA M. PLoS One, 2012, 7(7):e40459.

    13. [13]

      ZHU J J, DENG L L, GU H W, HIMMATI F, CHIOREAN E G, RAFTERY D. J. Proteome Res., 2014, 13(9):4120-4130.

    14. [14]

      KLEPACKI J, KLAWITTER J, KLAWITTER J, KARIMPOUR-FARD A, THURMAN J, INGLE G, PATEL D, CHRISTIANS U. Clin. Biochem., 2016, 49(13-14):955-961.

    15. [15]

    16. [16]

    17. [17]

      YANG Z L, LI H, WANG B, LIU S Y. J. Chromatogr. B, 2016, 1012-1013:79-88.

    18. [18]

      CALDERÓN-SANTIAGO M, PRIEGO-CAPOTE F, GALACHE-OSUNA J G, DE CASTRO M D L. J. Pharmaceut. Biomed. Anal., 2012, 70:476-484.

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      WANG Q H, WEN Y, XIA T Y, XIONG X J, GAO S H, YOU C H, TAO X, ZHANG F, CHEN W S. Bioanalysis, 2016, 8(13):1337-1351.

    24. [24]

      XIA T Y, FU S X, WANG Q H, WEN Y, CHAN S A, ZHU S, GAO S H, TAO X, ZHANG F, CHEN W S. Biomed. Chromatogr., 2018, 32(5):e4198.

    25. [25]

      YANG Y, ZHANG F, GAO S H, WANG Z P, LI M M, WEI H, ZHONG R Q, CHEN W S. J. Anal. Methods Chem., 2020, 2020:4641709.

    26. [26]

      VAN DE MERBEL N C. TrAC-Trends Anal. Chem., 2008, 27(10):924-933.

    27. [27]

      ZHANG S, JIAN W Y, SULLIVAN S, SANKARAN B, EDOM R W, WENG N D, SHARKEY D. J. Chromatogr. B, 2014, 961(2):62-70.

    28. [28]

      SUGIMOTO H, KAKEHI M, JINNO F. Anal. Biochem., 2015, 487(14):38-44.

    29. [29]

      FURTADO D Z S, DE MOURA LEITE F B V, BARRETO C N, FARIA B, JEDLICKA L D L, SILVA E J, SILVA H D T, BECHARA E J H, ASSUNÇÃO N A. J. Pharmaceut. Biomed., 2017, 140:137-145.

    30. [30]

      ROY C, TREMBLAY P Y, BIENVENU J F, AYOTTE P. J. Chromatogr. B, 2016, 1027:40-49.

    31. [31]

      VISWANATHAN C T, BANSAL S, BOOTH B, DESTEFANO A J, ROSE M J, SAILSTAD J, SHAH V P, SKELLY J P, SWANN P G, WEINER R. AAPS J., 2007, 9(1):E30-E42.

    32. [32]

    33. [33]

      MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Anal. Chem., 2003, 75(13):3019-3030.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    18. [18]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(16)
  • Abstract views(812)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return