Citation:
ZHANG Wei-Jie, CHEN Jin-Ping, YU Tian-Jun, ZENG Yi, GUO Xu-Dong, WANG Shuang-Qing, YANG Guo-Qiang, LI Yi. Removal and Quantitative Analysis of Metal Ions in Photoresist[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(10): 1750-1757.
doi:
10.19756/j.issn.0253-3820.211248
-
Thiol resin was used as an adsorbent to remove metal ions in organic photoresists. The thermodynamics and kinetics of the adsorption of Pd in photoresists were investigated extensively by inductively coupled plasma-mass spectrometry (ICP-MS). The adsorption data of Pd ion under different temperatures followed pseudo-second-order kinetic model, indicating that the adsorption process was controlled by chemical interactions of Pd and thiol groups. The results of isothermal adsorption were fitted well with Langmuir isothermal adsorption model, indicating that Pd in photoresist tended to adsorb monolayer on the surface of thiol resin. With the temperature increased, the maximum adsorption capacity of thiol resin for Pd increased from 12.68 mg/g to 17.49 mg/g, suggesting that appropriately increasing the adsorption temperature was helpful to improve the adsorption efficiency. The comprehensive purification results showed that thiol resin could be considered as a promising adsorbent for removal of Li, Na, Mg, Al, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Pd and Sn ions in the photoresist. Most of the metal ions could be removed, with residual concentration down to 1.0 μg/L level. Compared with the Pall purification system, thiol resin was more effective for Pd purification, decreasing the content of Pd from 5.9 mg/L to 0.4 μg/L. However, for abundant metal ions such as Na and Ca with reducing limitation to 11.8 μg/L and 13.0 μg/L, respectively, the purification needs to be further optimized.
-
-
-
[1]
KWON Y G, JIN B K, TSUYOKIKO F, YUJI S, MITSURU U. J. Mater. Chem., 2002, 12(1):53-57.
-
[2]
HUA X F, ENGELMANN S, OEHRLEIN G S, LAZZWERI P, IACOB E, ANDERLE M. J. Vac. Sci. Technol. B, 2006, 24(4):1850-1858.
-
[3]
RATHORE A, POLLENTIER I, SINGH H, FALLICA R, DE SIMONE D, GENDT D. J. Mater. Chem. C, 2020, 8(17):5958-5966.
-
[4]
CAPITANIO D, MIZUNO Y, LEE J. Proc. SPIE, 1999, 3678:684-688.
-
[5]
-
[6]
TSENG H S, LING X P. Proc. SPIE., 2002, 4690:809-816.
-
[7]
-
[8]
-
[9]
ZENG G Y, HE Y, ZHAN Y Q, ZHANG L, PAN Y, ZHANG C L, YU Z X. J. Hazard. Mater., 2016, 317:60-72.
-
[10]
WACLAWEK S, LUTZE H V, VRUBEL K, PADIL V V T, CERNIK M, DIONYSIOU D D. Chem. Eng. J., 2017, 330:44-62.
-
[11]
DURU I, EGE D, KAMAIL A R. J. Mater. Sci., 2016, 51(13):6097-6116.
-
[12]
LEE C G, LEE S, PARK J A, PARK C, LEE S J, KIM S B, AN B, YUN S T, LEE S H, CHOI J W. Chemosphere, 2017, 166:203-211.
-
[13]
ABBAS K, ZNAD H, AWUAL M R. Chem. Eng. J., 2018, 334:432-443.
-
[14]
LI G L, ZHAO Z S, LIU J Y, JIANG G B. J. Hazard. Mater., 2011, 192(1):277-283.
-
[15]
HUA R, LI Z K. Chem. Eng. J., 2014, 249:189-200.
-
[16]
YU Q, FEIN J B. Environ. Sci. Technol., 2017, 51(24):14360-14367.
-
[17]
LITTKE A F, FU G G. Angew. Chem., Int. Ed., 2002, 41(22):4176-4211.
-
[18]
SCHEUERMANN G M, RUMI L, STEURER P, BANNWARTH W, MUELHAUPT R. J. Am. Chem. Soc., 2009, 131(23):8262-8270.
-
[19]
SCHROETER F, STRASSNER T. Eur. J. Inorg. Chem., 2017, (36):4231-4236.
-
[20]
PENG X M, WANG Y F, XU J, YUAN H, WANG L Q, ZHANG T, GUO X D, WANG S Q, LI Y, YANG G Q. Macromil. Mater. Eng., 2018, 303(6):1700654.
-
[21]
CHEN J P, HAO Q S, WANG S Q, LI S Y, YU T J, ZENG Y, ZHAO J, YANG S M, WU Y Q, XUE C F, YANG G Q, LI Y. ACS Appl. Polym. Mater., 2019, 1(3):526-534.
-
[22]
-
[23]
ALQADAMI A A, NAUSHAD M, ABDALLA M A, AHAMAD T, ALOTHMAN Z A, ALSHEHRI S M, GHFAR A A. J. Cleaner Prod., 2017, 156:426-436.
-
[24]
DEHGHANI M H, SANAEI D, ALI I, BHATNAGAR A. J. Mol. Liq., 2016, 215:671-679.
-
[25]
AIL R M, HAMAD H A, HUSSEIN M M, MALASH G F. Ecol. Eng., 2016, 91:317-332.
-
[26]
NAUSHAD M, AHAMAD T, SHARMA G, AL-MUHTASED A H, ALBADARIN A B, ALAM M M, ALOTHMAN Z A, ALSHEHRI S M, GHFAR A A. Chem. Eng. J., 2016, 300:306-316.
-
[1]
-
-
-
[1]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[2]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[3]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[4]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[5]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[8]
Qianqian Zhong , Yucui Hao , Guotao Yu , Lijuan Zhao , Jingfu Wang , Jian Liu , Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013
-
[9]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[10]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[11]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[12]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[13]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[14]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[17]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[18]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[19]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[20]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[1]
Metrics
- PDF Downloads(52)
- Abstract views(1604)
- HTML views(372)