Citation: ZHANG Jin,  YE Shi-Zhu,  WU Ai-Jing,  LI Bo-Yan,  LI Jie,  ZHAN You-Guo,  PENG Hai-Gen,  XU Xing-Yang. Continuous Wavelet Transform Combined with Parametric-Free Calibration Enhancement Framework for Calibration of Time-shift Near-infrared Spectra[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1391-1398. doi: 10.19756/j.issn.0253-3820.211236 shu

Continuous Wavelet Transform Combined with Parametric-Free Calibration Enhancement Framework for Calibration of Time-shift Near-infrared Spectra

  • Corresponding author: XU Xing-Yang, yy_xxy@sina.com
  • Received Date: 20 March 2021
    Revised Date: 11 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22004022), the Guizhou Provincial Science and Technology Projects (No.ZK[2021]045) and the Department of Education of Guizhou Province of China (No.KY[2021]163).

  • Near-infrared (NIR) spectroscopy is a highly efficient and non-destructive technology applied in many areas. The measured spectra, however, are susceptible to shift due to various external interferences, resulting in biased analytical results. Time-shifts in NIR spectra are typical phenomena of continuously shifting spectra with measuring time, which is common in practical applications. In this study,a new method for modeling the time-shift NIR spectra was proposed, in which the shifting signal was divided into shifting background and sample-dependent shifts, and then corrected by continuous wavelet transform (CWT) and semi-supervised parameter-free calibration enhancement (SS-PFCE), respectively. The efficiency of the method was evaluated by modeling 1941 time-shift NIR spectra of soil samples collected in Yunnan Province (China) in 2019 and 2020 to predict the soil organic matter (SOM) content. The spectra taken in 2019 were calibrated (Root mean squared error of prediction (RMSEP)=6.7 g/kg, R2=0.76) and a large deviation was observed in predicting the spectra taken in 2020 (RMSEP=31.3 g/kg, R2=0.50). After CWT treatment, the prediction of spectra measured in 2020 was significantly promoted by predicting the spectra (RMSEP=11.6 g/kg, R2=0.66), and the prediction was further improved by SS-PFCE (RMSEP=8.3 g/kg, R2=0.67). The results indicated that CWT and SS-PFCE were efficient for eliminating the shifting background and sample-related shifts in time-shift NIR spectra, respectively.
  • 加载中
    1. [1]

      ZIEGLER U J, LEITENBERGER M, LONGIN C, FRIEDRICH H, WURSCHUM T, CARLE R, SCHWEIGGERT R M. J. Food Compos. Anal., 2016, 51:30-36.

    2. [2]

    3. [3]

    4. [4]

      SCHOOT M, KAPPER C, VAN KOLLENBURG G H, POSTMA G J, VAN KESSEL G, BUYDENS L M C, JANSEN J J. Chemom. Intell. Lab. Syst., 2020, 204:104105.

    5. [5]

      ZHANG J, CUI X Y, CAI W S, SHAO X G. Sci. China:Chem., 2019, 62(2):271-279.

    6. [6]

      ZHANG J, CUI X Y, CAI W S, SHAO X G. J. Chemometr., 2018, 32(11):e2971.

    7. [7]

      ZHANG J, GUO C, CAI W S, SHAO X G. Chemom. Intell. Lab. Syst., 2021, 210:104244.

    8. [8]

    9. [9]

    10. [10]

      WANG Y D, VELTKAMP D J, KOWALSKI B R. Anal. Chem., 2002, 63(23):2750-2756.

    11. [11]

      DU W, CHEN Z P, ZHONG L J, WANG S X, YU R Q, NORDON A, LITTLEJOHN D, HOLDEN M. Anal. Chim. Acta, 2011, 690(1):64-70.

    12. [12]

      LIU Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2014, 836:18-23.

    13. [13]

      ZHANG J, GUO C, CUI X Y, CAI W S, SHAO X G. Anal. Chim. Acta, 2019, 1050:25-31.

    14. [14]

      ZHANG J, LI B Y, HU Y, ZHOU L X, WANG G Z, GUO G, ZHANG Q H, LEI S C, ZHANG A H. Anal. Chim. Acta, 2021, 1142:169-178.

    15. [15]

      MISHRA P. Anal. Chim. Acta, 2021, 1187:339154.

    16. [16]

      MISHRA P, WOLTERING E. Anal. Chim. Acta, 2021, 1177:338771.

    17. [17]

      MISHRA P. Chemom. Intell. Lab. Syst., 2021, 214:104338.

    18. [18]

    19. [19]

      LI X Y, CAI W S, SHAO X G. J. Near Infrared Spectrosc., 2015, 23(5):285-291.

    20. [20]

      ZOU X B, ZHAO J W, MALCOLM P, MEL H, MAO H P. Anal. Chim. Acta, 2010, 667(1-2):14-32.

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    13. [13]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(12)
  • Abstract views(335)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return