Citation: YE Jia-Yue,  ZENG Wei-Biao,  WEI Yi-Ping. Application of Direct Injection Mass Spectrometry in Clinical Diagnosis of Thoracic Tumors[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(4): 484-491. doi: 10.19756/j.issn.0253-3820.211216 shu

Application of Direct Injection Mass Spectrometry in Clinical Diagnosis of Thoracic Tumors

  • Corresponding author: WEI Yi-Ping, weiyip2000@hotmail.com
  • Received Date: 17 March 2021
    Revised Date: 4 October 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 81860379, 82160410).

  • Mass spectrometry (MS) analysis has become one of the core technologies for clinical disease research. Traditional mass spectrometry techniques such as liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) often require multi-step pre-processing of different clinical samples, which can not meet the practical requirements of large samples and high throughput analysis in clinical settings, while these needs are driving the development of new technologies for mass spectrometry from laboratory to clinical applications. The lack of ideal preoperative diagnostic protocols for chest malignancies such as lung cancer and esophageal cancer, the long waiting time for intraoperative pathology to assess the nature of the cut edge, and the lack of ideal models to assess the risk of recurrence in the postoperative period are among the main reasons for ″under-treatment″ and ″over-treatment″ in clinical practice. This is one of the main reasons for ″under-treatment″ and ″over-treatment″ in clinical practice. Direct injection mass spectrometry has high specificity and sensitivity, which effectively improves the accuracy of sample nature determination and decreases the analysis time of samples in clinical analysis, providing important guidance for clinical diagnosis and chest tumor research. This review introduced the progress of the application of direct injection mass spectrometry in the perioperative diagnosis of thoracic tumors, and briefly described the prospects of the application of direct injection mass spectrometry combined with histological methods to explore thoracic tumor biomarkers for the prevention of postoperative recurrence.
  • 加载中
    1. [1]

      LU B W, BAUM L, SO K F, CHIU K, XIE L K. Neural Regen. Res., 2019, 14(9):1494-1498.

    2. [2]

      LIMA N M, FERNANDES B L M, ALVES G F, DE SOUZA J C Q, SIQUEIRA M M, PATRÍCIA DO NASCIMENTO M, MOREIRA O B O, SUSSULINI A, DE OLIVEIRA M A L. Anal. Chim. Acta, 2022, 1195:339385.

    3. [3]

      HU S C, BRYANT M S, SEPEHR E, KANG H K, TRBOJEVICH R, LAGAUD G, MEHTA D, DING W, MITTELSTAEDT R A, PEARCE M G, BISHOP M E, DAVIS K J, LEWIS S M, CHEMERYNSKI S, YEE S B, CORAGGIO M, ROSENFELDT H, YEAGER R P, HOWARD P C, TANG Y. Toxicol. Sci., 2021, 182(1):10-28.

    4. [4]

      YU K W, LI B L, YUAN Y S, LIAO J M, LI W K, DONG H, KE P F, JIN X, CHEN L, ZHAO J J, WANG H, CAO S W, CHEN W Y, HUANG X Z, ZHAO B B, KANG C M. Heliyon, 2022, 8(8):e10214.

    5. [5]

      YAGIHASHI G, TARUI T, MIYAGI H, OHNISHI H, WATANABE T, YAMAGUCHI Y. Acute Med. Surg., 2020, 7(1):e487.

    6. [6]

      DUAN M, QIN L, ZHONG D, ZHANG P. Biomed. Chromatogr., 2019, 33(10):e4618.

    7. [7]

      FAN S Y, ZANG C Z, SHIH P H, KO Y C, HSU Y H, LIN M C, TSENG S H, WANG D Y. Forensic Sci. Int., 2021, 325:110884.

    8. [8]

      KIRBY A E, LAFRENIÈRE N M, SEALE B, HENDRICKS P I, COOKS R G, WHEELER A R. Anal. Chem., 2014, 86(12):6121-6129.

    9. [9]

      WANG H, LI L, XING R, ZHANG Y, WU T, CHEN B, LI Z, FEI Z, LIU Z, DING H. Food Chem., 2019, 272:411-417.

    10. [10]

      CODY R B, LARAMÉE J A, DURST H D. Anal. Chem., 2005, 77(8):2297-2302.

    11. [11]

      TAKÁTS Z, COTTE-RODRIGUEZ I, TALATY N, CHEN H, COOKS R G. Chem. Commun., 2005, 41(15):1950-1952.

    12. [12]

      CHEN H, VENTER A, COOKS R G. Chem. Commun., 2006, 48(19):2042-2044.

    13. [13]

      ZHANG H, ZHU L, LUO L, WANG N, CHINGIN K, GUO X, CHEN H. J. Agric. Food Chem., 2013, 61(45):10691-10698.

    14. [14]

      NA N, ZHANG C, ZHAO M, ZHANG S, YANG C, FANG X, ZHANG X. J. Mass Spectrom., 2007, 42(8):1079-1085.

    15. [15]

      HARPER J D, CHARIPAR N A, MULLIGAN C C, ZHANG X, COOKS R G, OUYANG Z. Anal. Chem., 2008, 80(23):9097-9104.

    16. [16]

      LI H, VERTES A. Analyst, 2017, 142(16):2921-2927.

    17. [17]

      BOKHART M T, MANNI J, GARRARD K P, EKELÖF M, NAZARI M, MUDDIMAN D C. J. Am. Soc. Mass Spectrom., 2017, 28(10):2099-2107.

    18. [18]

      ASHRAFIZADEH M, ZARRABI A, HUSHMANDI K, KALANTARI M, MOHAMMADINEJAD R, JAVAHERI T, SETHI G. Int. J. Mol. Sci., 2020, 21(11):4002.

    19. [19]

      SUNG H, FERLAY J, SIEGEL R L, LAVERSANNE M, SOERJOMATARAM I, JEMAL A, BRAY F. CA Cancer J. Clin., 2021, 71(3):209-249.

    20. [20]

      GAMEZ G, ZHU L, DISKO A, CHEN H, AZOV V, CHINGIN K, KRÄMER G, ZENOBI R. Chem. Commun., 2011, 47(17):4884-4886.

    21. [21]

      FANG Z, HE J, FANG W, RUAN L, FANG F. Heart Lung Circ., 2016, 25(4):392-397.

    22. [22]

      FUJIWARA Y, YOSHIKAWA R, KAMIKONYA N, NAKAYAMA T, KITANI K, TSUJIE M, YUKAWA M, INOUE M, YAMAMURA T. Oncol. Rep., 2012, 28(2):446-452.

    23. [23]

      GUI Y, LU Y, LI S, ZHANG M, DUAN X, LIU C C, JIA J, LIU G. Sci. Rep., 2020, 10(1):15550.

    24. [24]

      WANG S, LI F, LIU Y Z, ZHAO H, CHEN H. Anal. Bioanal. Chem., 2019, 411(18):4049-4054.

    25. [25]

      LAPOINTE J, MUSSELMAN B, O'NEILL T, SHEPARD J R E. J. Am. Soc. Mass Spectrom., 2015, 26(1):159-165.

    26. [26]

    27. [27]

      ALFARO C M, JARMUSCH A K, PIRRO V, KERIAN K S, MASTERSON T A, CHENG L, COOKS R G. Anal. Bioanal. Chem., 2016, 408(20):5407-5414.

    28. [28]

    29. [29]

    30. [30]

      WARNER E, JOTKOWITZ A, MAIMON N. Eur. J. Intern. Med., 2010, 21(1):6-11.

    31. [31]

      PINSKY P F, BELLINGER C R, MILLER JR D P. J. Med. Screen., 2018, 25(2):110-112.

    32. [32]

      YEEN T N S, PATHMANATHAN R, SHIRAN M S, ZAID F A A, CHEAH Y K. J. Biomed. Sci., 2013, 20(1):22.

    33. [33]

      MAIONE P, ROSSI A, SACCO P C, BARESCHINO M A, SCHETTINO C, GRIDELLI C. Expert Opin. Pharmacother., 2010, 11(18):2997-3007.

    34. [34]

      KANG C, WANG D, ZHANG X, WANG L, WANG F, CHEN J. Comput. Math. Methods Med., 2021, 2021:9987067.

    35. [35]

      LI F, WEI F, HUANG W L, LIN C C, LI L, SHEN M M, YAN Q, LIAO W, CHIA D, TU M, TANG J H, FENG Z, KIM Y, SU W C, WONG D T W. Cancers (Basel), 2020, 12(8):2041.

    36. [36]

      KAPELERIS J, MÜLLER BARK J, RANJIT S, IRWIN D, HARTEL G, WARKIANI M E, LEO P, O'LEARY C, LADWA R, O'BYRNE K, HUGHES B G M, PUNYADEERA C. Heliyon, 2022, 8(7):e09971.

    37. [37]

      LU H, ZHANG H, WEI Y, CHEN H. Analyst, 2020, 145(2):313-320.

    38. [38]

      FIGUEIREDO E C, SANVIDO G B, ZEZZI ARRUDA M A, EBERLIN M N. Analyst, 2010, 135(4):726-730.

    39. [39]

      GU H, CHEN H, PAN Z, JACKSON A U, TALATY N, XI B, KISSINGER C, DUDA C, MANN D, RAFTERY D, COOKS R G. Anal. Chem., 2007, 79(1):89-97.

    40. [40]

      PLEKHOVA V, VAN MEULEBROEK L, DE GRAEVE M, PERDONES-MONTERO A, DE SPIEGELEER M, DE PAEPE E, VAN DE WALLE E, TAKATS Z, CAMERON S J S, VANHAECKE L. Nat. Protoc., 2021, 16(9):4327-4354.

    41. [41]

      GORDON S M, SZIDON J P, KROTOSZYNSKI B K, GIBBONS R D, O'NEILL H J. Clin. Chem., 1985, 31(8):1278-1282.

    42. [42]

      PHILLIPS M, GLEESON K, HUGHES J M B, GREENBERG J, CATANEO R N, BAKER L, MCVAY W P. Lancet, 1999, 353(9168):1930-1933.

    43. [43]

      BLANCO F G, VIDAL-DE-MIGUEL G. Crit. Rev. Anal. Chem., 2021:DOI:10.1080/10408347.2021.1981226.

    44. [44]

      ZHU J, BEAN H D, WARGO M J, LECLAIR L W, HILL J E. J. Breath Res., 2013, 7(1):016003.

    45. [45]

      MARTINEZ-LOZANO SINUES P, LANDONI E, MICELI R, DIBARI V F, DUGO M, AGRESTI R, TAGLIABUE E, CRISTONI S, ORLANDI R. J. Breath Res., 2015, 9(3):031001.

    46. [46]

      ZUO W, BAI W, GAN X, XU F, WEN G, ZHANG W. J. Biomed. Nanotechnol., 2019, 15(4):633-646.

    47. [47]

      ROSENTHAL K, RUSZKIEWICZ D M, ALLEN H, LINDLEY M R, TURNER M A, HUNSICKER E. J. Breath Res., 2019, 13(4):046013.

    48. [48]

      WEI Y, CHEN L, ZHOU W, CHINGIN K, OUYANG Y, ZHU T, WEN H, DING J, XU J, CHEN H. Sci. Rep., 2015, 5(1):10077.

    49. [49]

      ZHANG J, XU J, LU H, DING J, YU D, LI P, XIONG J, LIU X, CHEN H, WEI Y. Oncotarget, 2016, 7(39):63158-63165.

    50. [50]

      ZHENG Q, ZHANG J, WANG X, ZHANG W, XIAO Y, HU S, XU J. Onco. Targets Ther., 2021, 14:469-479.

    51. [51]

      KERIAN K S, JARMUSCH A K, PIRRO V, KOCH M O, MASTERSON T A, CHENG L, COOKS R G. Analyst, 2015, 140(4):1090-1098.

    52. [52]

      PIRRO V, ALFARO C M, JARMUSCH A K, HATTAB E M, COHEN-GADOL A A, COOKS R G. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(26):6700-6705.

    53. [53]

      JARMUSCH A K, ALFARO C M, PIRRO V, HATTAB E M, COHEN-GADOL A A, COOKS R G. PLoS One, 2016, 11(9):e0163180.

    54. [54]

      BENSUSSAN A V, LIN J, GUO C, KATZ R, KRISHNAMURTHY S, CRESSMAN E, EBERLIN L S. Clin. Chem., 2020, 66(11):1424-1433.

    55. [55]

      HE M J, PU W, WANG X, ZHANG W, TANG D, DAI Y. Front. Oncol., 2022, 12:891018.

    56. [56]

      BALOG J, SASI-SZABÓ L, KINROSS J, LEWIS M R, MUIRHEAD L J, VESELKOV K, MIRNEZAMI R, DEZSŐ B, DAMJANOVICH L, DARZI A, NICHOLSON J K, TAKÁTS Z. Sci. Transl. Med., 2013, 5(194):194ra193.

    57. [57]

      SCHÄFER K C, DÉNES J, ALBRECHT K, SZANISZLÓ T, BALOG J, SKOUMAL R, KATONA M, TÓTH M, BALOGH L, TAKÁTS Z. Angew. Chem. Int. Ed., 2009, 48(44):8240-8242.

    58. [58]

      ZHANG J, RECTOR J, LIN J Q, YOUNG J H, SANS M, KATTA N, GIESE N, YU W, NAGI C, SULIBURK J, LIU J, BENSUSSAN A, DEHOOG R J, GARZA K Y, LUDOLPH B, SORACE A G, SYED A, ZAHEDIVASH A, MILNER T E, EBERLIN L S. Sci. Transl. Med., 2017, 9(406):eaan3968.

    59. [59]

      BALOG J, SZANISZLO T, SCHAEFER K C, DENES J, LOPATA A, GODORHAZY L, SZALAY D, BALOGH L, SASI-SZABO L, TOTH M, TAKATS Z. Anal. Chem., 2010, 82(17):7343-7350.

    60. [60]

      ST JOHN E R, BALOG J, MCKENZIE J S, ROSSI M, COVINGTON A, MUIRHEAD L, BODAI Z, ROSINI F, SPELLER A V M, SHOUSHA S, RAMAKRISHNAN R, DARZI A, TAKATS Z, LEFF D R. Breast Cancer Res., 2017, 19(1):59.

    61. [61]

      MCDONNELL L A, CORTHALS G L, WILLEMS S M, VAN REMOORTERE A, VAN ZEIJL R J M, DEELDER A M. J. Proteomics, 2010, 73(10):1921-1944.

    62. [62]

      BATESON H, SALEEM S, LOADMAN P M, SUTTON C W. J. Pharmacol. Toxicol. Methods, 2011, 64(3):197-206.

    63. [63]

      SCHÖNE C, HÖFLER H, WALCH A. Clin. Biochem., 2013, 46(6):539-545.

    64. [64]

      CHEN H, PAN Z, TALATY N, RAFTERY D, COOKS R G. Rapid Commun. Mass Spectrom., 2006, 20(10):1577-1584.

    65. [65]

      GOUW A M, EBERLIN L S, MARGULIS K, SULLIVAN D K, TOAL G G, TONG L, ZARE R N, FELSHER D W. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(17):4300-4305.

    66. [66]

      LU H, ZHANG H, CHINGIN K, WEI Y, XU J, KE M, HUANG K, FENG S, CHEN H. Anal. Chem., 2019, 91(16):10532-10540.

    67. [67]

      SUN C, LI T, SONG X, HUANG L, ZANG Q, XU J, BI N, JIAO G, HAO Y, CHEN Y, ZHANG R, LUO Z, LI X, WANG L, WANG Z, SONG Y, HE J, ABLIZ Z. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(1):52-57.

    68. [68]

      MA X, FERNáNDEZ F M. Mass Spectrom. Rev., 2022:e21804.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    3. [3]

      Xin Hua Songqin Liu . Research on Teaching Practice of Spectral Analytical Chemistry Based on Thematic Discussion. University Chemistry, 2025, 40(7): 106-111. doi: 10.12461/PKU.DXHX202408043

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    10. [10]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    11. [11]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    12. [12]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    17. [17]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    18. [18]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    19. [19]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    20. [20]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

Metrics
  • PDF Downloads(7)
  • Abstract views(1542)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return