Citation: LI Ming,  LI Zheng-Ming,  DONG Xiao-Tong,  JIA Liang-Bin,  ZHU Mei-Yan,  MA Ye,  ZHAO Ming-Gang,  CUI Hong-Zhi. Fabrication of Cu/CuO/ZnO/PPy Heterojunction Materials for Anti-interference Detection of Hg2+ in Seawater[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(9): 1497-1505. doi: 10.19756/j.issn.0253-3820.211214 shu

Fabrication of Cu/CuO/ZnO/PPy Heterojunction Materials for Anti-interference Detection of Hg2+ in Seawater

  • Corresponding author: ZHAO Ming-Gang, zhaomg@ouc.edu.cn
  • Received Date: 17 March 2021
    Revised Date: 4 July 2021

    Fund Project: Supported by the Fundamental Research Funds for the Central University of China (Nos.202042009, 201964011) and the National Natural Science Foundation of China (No.52072353).

  • Hg2+ pollutant poses significant risks to human health and the ecological environment. However, the direct and sensitive detection technique for Hg2+ has been lacking at the present time. In this study, Cu/CuO/ZnO wire was fabricated by alkaline oxidation method and hydrothermal method, and PPy was covered on the material surface by electrochemical polymerization method. Based on the principle that the p-n junction barrier drives the electrochemical signal response, the material was used for direct electrochemical detection of Hg2+ and differential pulse voltammetry was performed. The prepared composite was successfully used for detection of Hg2+ in the concentration range from 200 nmol/L to 1600 nmol/L, with a ultra-high sensitivity (1010.82 μA·L/(nmol·cm2)) and a ultra-low detection limit (2.1 pmol/L). The novel sensing mode based on the interface barrier eliminated the interference of other ions and achieved good recoveries (97.3%-105.0%) in tap water, river water and sea water, with RSD of 1.8%-5.6%. This approach could be extended to develop new sensors for other heavy metals by employing p-n junction barrier.
  • 加载中
    1. [1]

      LI C P, NIU Q F, WANG J G, WEI T, Li T D, CHEN J B, QIN X Y, YANG Q X. Spectrochim. Acta, Part A, 2020, 233:118208.

    2. [2]

      COUNTER S A, BUCHANAN L H. Toxicol. Appl. Pharmacol., 2004, 198(2):209-230.

    3. [3]

      LI X Y, DU Z H, LIN S H, TIAN J J, TIAN H T, XU W T. Food Chem., 2020, 316:126303.

    4. [4]

      ZHANG H, LEI Z X, FU X, DENG X C, WANG Q, GU D Y. Sens. Actuators, B, 2017, 246:896-903.

    5. [5]

      ZHANG M, GE L, GE S G, YAN M, YU J H, HUANG J D, LIU S. Biosens. Bioelectron., 2013, 41:544-550.

    6. [6]

      LI Z B, MIAO X M, XING K, PENG X, ZHU A H, LING L S. Biosens. Bioelectron., 2016, 80:339-343.

    7. [7]

      WANG N, LIN M, DAI H X, MA H Y. Biosens. Bioelectron., 2016, 79:320-326.

    8. [8]

      ZHUANG Y P, ZHAO M G, HE Y, CHENG F, CHEN S G. J. Electroanal. Chem., 2018, 826:90-95.

    9. [9]

      CHAIVO S, CHAILAPAKUL O, SIANGPROH W. Anal. Chim. Acta, 2014, 852:55-62.

    10. [10]

      CUI L, WU J, JU H X. Biosens. Bioelectron., 2015, 63:276-286.

    11. [11]

      SYSHCHYK O, SKRYSHEVSKY V A, SOLDATKIN O O, SOLDATKIN A P.Biosens. Bioelectron., 2015, 66:89-94.

    12. [12]

      MARTINIANO L C, ABRANTES V R, NETO S Y, MARQUES E P, FONSECA T C O, PAIM L L, SOUZA A G, STRADIOTTO N R, AUCELIO R Q, CAVALCANTE G H R, MARQUES A L B. Fuel, 2013, 103:1164-1167.

    13. [13]

      JIA J, DU X, ZHANG Q Q, LIU E Z, FAN J. Appl. Surf. Sci., 2019, 492:527-539.

    14. [14]

      JIANG Y, LIAO J F, CHEN H Y, ZHANG H H, LI J Y, WANG X D, KUANG D B. Chem, 2020, 6(3):766-780.

    15. [15]

      DAEMI S, GHASEMI S, ASHKARRAN A A. J. Colloid Interface Sci., 2019, 550:180-189.

    16. [16]

      WANG L, TAHIR M, CHEN H, SAMBUR J B. Nano Lett., 2019, 19(12):9084-9094.

    17. [17]

      QIAO S L, ZHAO J, ZHANG B Y, LIU C H, LI Z, HU S Z, LI Q. Int. J. Hydrogen Energy, 2019, 44(60):32019-32029.

    18. [18]

      SHANG J H, ZHAO M G, QU H Y, LI H, GAO R J, CHEN S G. J. Electroanal. Chem., 2019, 855:113624.

    19. [19]

      GAI P P, YU W, ZHAO H, QI R L, LI F, LIU L B, LV F T, WANG S. Angew. Chem., Int. Ed. 2020, 59:7224-7229.

    20. [20]

      ZHAO M G, SHANG J H, QU H Y, GAO R J, LI H, CHEN S G. Anal. Chim. Acta, 2019, 1095:93-98.

    21. [21]

      SINGH J, SONI R K. Appl. Surf. Sci., 2020, 521:146420.

    22. [22]

      KAVIYARASU K, MAGDALANE C M, ANAND K, MANIKANDAN E, MAAZA M. Spectrochim. Acta, Part A, 2015, 142:405-409.

    23. [23]

      ANEESIYA K R, LOUIS C. J. Alloys Compd., 2020, 829:154497.

    24. [24]

      XIA W, WANG Y, WANG Q, YAN Y Z, JIANG Y J. Appl. Surf. Sci., 2019, 506:145008.

    25. [25]

      REZAEI B, BOROUJENI M K L, ENSAFI A A. Biosens. Bioelectron., 2014, 60:77-83.

    26. [26]

      CHANDRA V, KIM K S. Chem. Commun., 2011, 47(13):3942-3944.

    27. [27]

      KHANNA P K, BHANOTH S, DHANWE V, KSHIRSAGAR A, MORE P. RSC Adv., 2015, 5(113):92818-92828.

    28. [28]

      JAFARIAN M, AFGHAHI S S S, ATASSI Y, LORIAMINI A. J. Magn. Magn. Mater., 2019, 493:165680.

    29. [29]

      OLAD A, RASHIDZADEH A, AMINI M. Adv. Polym. Technol., 2013, 32(2):21337

    30. [30]

      NOEI H, QIU H S, WANG Y M, LOFFLER E, WOLL C, MUHLER M. Phys. Chem. Chem. Phys., 2008, 10(47):7092-7097.

    31. [31]

      HUANG J H, YANG Z H, YANG B, WANG R J, WANG T T. J. Power Sources, 2014, 271:143-151.

    32. [32]

      YIN Z G, FAN W B, DING Y H, LI J X, GUAN L H, ZHENG Q D. ACS Sustainable Chem. Eng., 2015, 3(3):507-517.

    33. [33]

      WANG W, XU L H, ZHANG R F, XU J L, XIAN F L, SU J, YANG F. Chem. Phys. Lett., 2019, 721:57-61.

    34. [34]

      XU L H, ZHOU Y, WU Z J, ZHENG G G, HE J J, ZHOU Y J. J. Phys. Chem. Solids, 2017, 106:29-36.

    35. [35]

      LI B X, WANG Y F. Superlattices Microstruct., 2010, 47(5):615-623.

    36. [36]

      CHANDRA V, KIM K S. Chem. Commun., 2011, 47(13):3942-3944.

    37. [37]

      GONG J M, ZHOU T, SONG D D, ZHANG L Z. Sens. Actuators, B, 2010, 150(2):491-497.

    38. [38]

      ZHANG X R, LI Y, SU H R, ZHANG S S. Biosens. Bioelectron., 2010, 25(6):1338-1343.

    39. [39]

      XIE Y L, ZHAO S Q, YE H L, YUAN J, SONG P, HU S Q. J. Electroanal. Chem., 2015, 757:235-242.

    40. [40]

      WEN G L, ZHAO W, CHEN X, LIU J Q, WANG Y, ZHANG Y, HUANG Z J, WU Y C. Electrochim. Acta, 2018, 291:95-102.

    41. [41]

      SHARMA V V, TONELLI D, GUADAGNINI L, GAZZANO M. Sens. Actuators, B, 2017, 238:9-15.

    42. [42]

      ZHAO Z Q, CHEN X, YANG Q, LIU J H, HUANG X J. Chem. Commun., 2012, 48(16):2180-2182.

    43. [43]

      MA L F, ZHANG X Y, IKRAM M, ULLAH M, WU H Y, SHI K Y. Chem. Eng. J., 2020, 395:125216.

    44. [44]

      LI Z B, MIAO X M, XING K, PENG X, ZHU A H, LING L S. Biosens. Bioelectron., 2016, 80:339-343.

    45. [45]

      ZHANG L X, FENG L P, LI P, CHEN X, JIANG J T, ZHANG S, ZHANG C X, ZHANG A C, CHEN G F, WANG H. Chem. Eng. J., 2020, 395:125072.

    46. [46]

      GE L, HONG Q, LI H, LIU C, LI F. Adv. Funct. Mater. 2019, 29:1904000.

  • 加载中
    1. [1]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    2. [2]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    7. [7]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    15. [15]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(15)
  • Abstract views(1129)
  • HTML views(220)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return