Citation: CHEN Cong-Cong,  LI Jia-Yu,  HUANG Yu-Hao,  ZHANG Lei,  WANG Yun-Ju,  WANG Hong-Yu. Study on Quaternary Alkyl Ammonium Intercalation into Graphite Negative Electrodes by In-Situ X-ray Diffraction and Electrochemical Dilatometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 413-423. doi: 10.19756/j.issn.0253-3820.211138 shu

Study on Quaternary Alkyl Ammonium Intercalation into Graphite Negative Electrodes by In-Situ X-ray Diffraction and Electrochemical Dilatometry

  • Corresponding author: WANG Hong-Yu, hongyuwang@ciac.ac.cn
  • Received Date: 22 February 2021
    Revised Date: 30 March 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21975251).

  • In activated carbon/graphite capacitors, electrochemical dilatometry and in-situ X-ray diffraction (XRD) were used to investigate the expansion of graphite negative electrodes during the storage of spiro-(1,1') bipyrrolidinium cation (SBP+) from both macro and micro perspectives. The electrochemical dilatometry can accurately monitor the changes in the macroscopic thickness of the graphite electrode, while in-situ XRD can detect the changes in the microscopic crystal structure of the graphite electrode in real time. Through the comparison of the two set of data, it was found that the relative lattice expansion of graphite caused by ion intercalation on the microscopic scale was very close (56%-59%), with a completely different expansion phenomenon from a macroscopic point of view. Large graphite flakes exhibited a greater expansion (12%), while graphite flakes with a smaller size and spherical graphite demonstrated a very small expansion (5%-6%). The scanning electron microscope test showed that this tendency was closely related to the morphology of graphite and the arrangement of graphite particles on the current collector. The high orientation of large graphite flakes led to the relatively larger electrode expansion, while the disorderly arrangement of thin graphite flakes and the isotropic structure of natural spherical graphite would cause the expansion to be dispersed in all directions, and then made the overall expansion smaller.
  • 加载中
    1. [1]

      BEGUIN F, PRESSER V, BALDUCCI A, FRACKOWIAK E. Adv. Mater, 2014, 26(14):2283-2283.

    2. [2]

      PLACKE T, SCHMUELLING G, KLOEPSCH R, MEISTER P, FROMM O, HILBIG P, MEYER H W, WINTER M. Z. Anorg. Allg. Chem., 2014, 640(10):1996-2006.

    3. [3]

      ROTHERMEL S, MEISTER P, SCHMUELLING G, FROMM O, MEYER H W, NOWAK S, WINTER M, PLACKE T. Energy Environ. Sci., 2014, 7(10):3412-3423.

    4. [4]

      MAEDA Y. J. Electrochem. Soc., 1990, 137(10):3047-3052.

    5. [5]

      ZHENG C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2014, 260:19-26.

    6. [6]

      ZHANG L, WANG H. ChemElectroChem, 2019, 6(17):4637-4644.

    7. [7]

      IKEDA H, NARUKAWA S, NAKAJIMA H. Japan Patent, 1982-208079.

    8. [8]

      JACHE B, ADELHELM P. Angew. Chem., Int. Ed., 2014, 126(38):10333-10337.

    9. [9]

      KOMABA S, HASEGAWA T, DAHBI M, KUBOTA K. Electrochem. Commun., 2015, 60:172-175.

    10. [10]

      FONG R, VONSACKEN U, DAHN J R. J. Electrochem. Soc., 1990, 137(7):2009-2013.

    11. [11]

      WANG H Y, YOSHIO M. J. Power Sources, 2012, 200:108-112.

    12. [12]

      LI J Y, ZHENG C, QI L, WANG H Y. Electrochim. Acta, 2017, 248:342-348.

    13. [13]

      LI J Y, HUANG Y H, WANG H Y. J. Electrochem. Soc., 2018, 165(16):A4012-A4017.

    14. [14]

      HUESKER J, FROBOSE L, KWADE A, WINTER M, PLACKE T. Electrochim. Acta, 2017, 257:423-435.

    15. [15]

      RIEGER B, SCHLUETER S, ERHARD S V, JOSSEN A. J. Electrochem. Soc., 2016, 163(8):A1595-A1606.

    16. [16]

      MICHAEL H, IACOVIELLO F, HEENAN T M M, LLEWELLYN A, WEAVING J S, JERVIS R, BRETT D J L, SHEARING P R. J. Electrochem. Soc., 2021, 168:010507.

    17. [17]

      ZHENG C, GAO J C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2013, 231:29-33.

    18. [18]

      CHIBA K, UEDA T, YAMAMOTO H. Electrochemistry, 2007, 75:664-667.

    19. [19]

      UE M, IDA K, MORI S. J. Electrochem. Soc., 1994, 141(11):2989-2996.

    20. [20]

      GAO J C, YOSHIO M, QI L, WANG H Y. J. Power Sources, 2015, 278:452-457.

    21. [21]

      RUCH P W, CERICOLA D, HAHN M, KOTZ R, WOKAUN A. J. Electroanal. Chem., 2009, 636(1-2):128-131.

    22. [22]

      SIRISAKSOONTORN W, LERNER M M. Inorg. Chem., 2013, 52:7139-7144.

    23. [23]

      RUCH P W, HAHN M, ROSCIANO F, HOLZAPFEL M, KAISEER H, SCHEIFELE W, SCHMITT B, NOVAK P, KOTZ R, WOKAUN A. Electrochim. Acta, 2007, 53:1074-1082.

    24. [24]

      ZHANG X R, SUKPIROM N, LERNER M M. Mater. Res. Bull., 1999, 34(3):363-372.

    25. [25]

      DRESSELHAUS M S, DRESSELHAUS G. Adv. Phys., 2002, 51:1-186.

    26. [26]

      KIM H K, ROH K C, KIM K B. J. Electrochem. Soc., 2015, 162(12):A2308-A2312.

    27. [27]

      YOSHIO M, WANG H Y, FUKUDA K, UMENO T, ABE T, OGUMI Z. J. Mater. Chem., 2004, 14(11):1754-1758.

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    20. [20]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

Metrics
  • PDF Downloads(6)
  • Abstract views(752)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return