Citation: PENG Hao,  YANG Fang,  DU Hui,  JIANG Bo,  YAO Chen-Yang,  YAO Jun-Lie,  ZHENG Fang,  WU Ai-Guo. Advances of Er3+ Doped Upconversion Nanoparticles for Biological Imaging[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(7): 1106-1120. doi: 10.19756/j.issn.0253-3820.211090 shu

Advances of Er3+ Doped Upconversion Nanoparticles for Biological Imaging

  • Corresponding author: WU Ai-Guo, aiguo@nimte.ac.cn
  • Received Date: 31 January 2021
    Revised Date: 20 May 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 32025021, 31971292, 51873225) and the Ministry of Science and Technology of China (No. 2018YFC0910601, SQ2019YFA040008-03).

  • Upconversion nanoparticles can emit high-energy photons in visible region under the excitation of near-infrared light. Compared with traditional fluorescent materials, upconversion nanoparticles show better tissue penetration depth and biocompatibility, and also reduce the fluorescence interference of biological cells and tissues. Therefore, upconversion nanoparticles have broad application prospects in the field of highly sensitivie biological imaging. Erbium (Er) has a strong absorption in the near infrared Ⅱ region (1500 nm), and can emit red or green light. With the excellent optical properties, Erbium is usually doped in the upconversion nanoparticles as the emission center. However, due to the problems of surface quenching and energy countercurrent, the upconversion nanoparticles doped with Er3+ have limited luminescence efficiency and low biological imaging performance. In this review, the development of Er3+ doped upconversion nanoparticles in optical properties optimization and biological imaging applications are summarized, and the latest progress and development prospects of Er3+ doped upconversion nanoparticle materials in the domain of temporal pathway imaging are discussed and prospected.
  • 加载中
    1. [1]

      BLOEMBERGEN N. Phys. Rev. Lett., 1959, 2(3): 84-85.

    2. [2]

      LOO J F C, CHIEN Y H, YIN F, KONG S K, HO H P, YONG K T. Coord. Chem. Rev., 2019, 400: 213042.

    3. [3]

      AUZEL F. Chem. Rev., 2004, 104(1): 139-173.

    4. [4]

      DONG H, SUN L D, YAN C H. Chem. Soc. Rev., 2015, 44(6): 1608-1634.

    5. [5]

      JIA F F, LI G L, YANG B, YU B, SHEN Y Q, CONG H L. Nanotechnol. Rev., 2019, 8(1): 1-17.

    6. [6]

      MADER S H, KELE P, SALEH M S, WOLFBEIS S O. Chem. Biol., 2010, 14(5): 582-596.

    7. [7]

      FAN Y, WANG P Y, LU Y Q, WANG R, ZHOU L, ZHENG X L, LI X M, PIPER J A, ZHANG F. Nat. Nanotechnol., 2018, 13: 941-946.

    8. [8]

      LU Y Q, LU J, ZHAO J B, CUSIDO J, RAYMO F M, YUAN J L, YANG S, LEIF R C, HUO Y J, PIPER J A, PAUL R J, GOLDYS E M, JIN D Y. Nat. Commun., 2014, 5: 3741.

    9. [9]

      XIANG G T, LIU X T, XIA Q, LIU X C, XU S, JIANG S, ZHAO X J, LI L, WU D, MA L, WANG X J, ZHANG J H. Talanta, 2021, 224: 121832.

    10. [10]

      CHEN S, WEITEMIER A Z, ZENG X, HE L M, WANG X Y, TAO Y Q, HUANG A J Y, HASHIMOTODANI Y, KANO M, IWASAKI H, PARAJULI L K, OKABE S, TEH D B L, ALL A H, TSUTSUI-KIMURA I, TANAKA K F, LIU X G, MCHUGH T J. Science, 2018, 359(6376): 679-684.

    11. [11]

      THAO C T B, HUY B T, SHARIPOV M, KIM J I, DAO V D, MOON J Y, LEE Y I. Mater. Sci. Eng. C, 2017, 75: 990-997.

    12. [12]

      ZHAO J X, CHEN X, CHEN B, LUO X, SUN T Y, ZHANG W W, WANG C J, LIN J, SU D, QIAO X S, WANG F. Adv. Funct. Mater., 2019, 29(44): 1903295.

    13. [13]

      DONG H, SUN L D, YAN C H. Nanoscale, 2013, 5(13): 5703-5714.

    14. [14]

      ZHOU B, SHI B Y, JIN D Y, LIU X G. Nat. Nanotechnol., 2015, 10(11): 924-936.

    15. [15]

      CHEN G Y, OHULCHANSKYY T Y, KACHYNSKI A, AGREN H, PRASAD P N. ACS Nano, 2011, 5(6): 4981-4986.

    16. [16]

      SHALAV A, RICHARDS B S, TRUPKE T, KRAMER K W, GUDEL H U. Appl. Phys. Lett., 2005, 86: 013505.

    17. [17]

      BINNEMANS K. Chem. Rev., 2009, 109(9): 4283-4374.

    18. [18]

      WANG F, LIU X G. Acc. Chem. Rev., 2014, 47(4): 1378-1385.

    19. [19]

      TU L P, LIU X M, WU F, ZHANG H. Chem. Soc. Rev., 2015, 44: 1331-1345.

    20. [20]

      ZUO J, LIU Q Q, XUE B, LI C X, CHANG Y L, ZHANG Y L, LIU X M, TU L P, ZHANG H, KONG X G. Nanoscale, 2017, 9(23): 7941-7946.

    21. [21]

      DU P, LUO L H, YU S J. Part. Part. Syst. Charact., 2018, 35(3): 1700416.

    22. [22]

      XIANG G T, LIU X T, XIA Q, LIU X C, XU S, JIANG S, ZHOU X J, LI L, WU D, MA L, WANG X J, ZHANG J H. Talanta, 2021, 224: 121832.

    23. [23]

      LUO R, CHEN L, LI Q Y, ZHOU J, MEI L Q, NING Z L, ZHAO Y, LIU M J, LAI X, BI J, YIN W Y, GAO D J. Inorg. Chem., 2020, 59(24): 17906-17915.

    24. [24]

      YADAV R S, DHOBLE S J, RAI S B. New J. Chem., 2018, 42(9): 7272-7282.

    25. [25]

      CHUNG J W, KWAK M, YANG H K. Luminescence, 2021, 36(3): 812-818.

    26. [26]

      YADAV R S, VERMA R K, RAI B S. J. Phys. D: Appl. Phys., 2013, 46(27): 275101.

    27. [27]

      TADGE P, YADAV R S, VISHWAKARMA P K, RAI S B, CHEN T M, SAPRA S, RAY S. J. Alloy Compd., 2020, 821: 153230.

    28. [28]

      KADAM A R, YADAV R S, MISHRA G C, DHOBLE S J. Ceram. Int., 2020, 46(3): 3264-3274.

    29. [29]

      WU Y F, LAI F Q, LIU B, LI Z B, LIANG T X, QIANG Y C, HUANG J H, YE X Y, YOU W X. J. Rare Earths, 2020, 38(2): 130-138.

    30. [30]

      DUBEY A, SONI A K, KUMARI A, DEY R, RAI V K. J. Alloy Compd., 2017, 693: 194-200.

    31. [31]

      CHENG Q, SUI J H, CAI W. Nanoscale, 2012, 4(3): 779-784.

    32. [32]

      WANG X W, ZHANG X, WANG Y B, LI H Y, XIE J, WEI T, HUANG Q W, XIE X J, HUANG L, HUANG W. Dalton Trans., 2017, 46(280): 8968-8974.

    33. [33]

      SUN Y Z, BI H F, WANG T, SUN L L, LI Z X, SONG H N, SUN F L, ZHOU H F, ZHOU G J, HU J F. Mater. Sci. Eng., B, 2020, 261: 114674.

    34. [34]

      ZHOU A H, SONG F, HAN Y D, SONG F F, JU D D, WANG X Q. CrystEngComm, 2018, 20(14): 2029.

    35. [35]

      LIN H, WANG Z G, HONG Y. J. Nanomater., 2020, 2020: 8509380.

    36. [36]

      ZHENG K Z, LOH K Y, WANG Y, CHEN Q S, FAN J Y, JUNG T Y, NAM S H, SUH Y D, LIU X G. Nano Today, 2019, 29: 100797.

    37. [37]

      YI G S, CHOW G M. Chem. Mater., 2007, 19(3): 341-343.

    38. [38]

      XIANG G T, ZHANG J H, HAO Z D, ZHANG X, PAN G H, LUO Y S, LV W, ZHAO H F. Inorg. Chem., 2015, 54(8): 3921-3928.

    39. [39]

      HOMANN C, KRUEWITT L, FRENZEL F, GRAUEL B, WURTH C, RESCH-GENGER U, HAASE M. Angew. Chem., Int. Ed., 2018, 57(28): 8765-8769.

    40. [40]

      WURTH C, FISCHER S, GRAUEL B, ALIVISATOS A P, RESCH-GENGER U. J. Am. Chem. Soc., 2018, 140: 4922-4928.

    41. [41]

      RABIE H, ZHANG Y X, PASQUALE N, LAGOS M J, BATSON P E, LEE K B. Adv. Mater., 2019, 31(14): 1806991.

    42. [42]

      MENG Z, ZHANG S F, WU S L. J. Lumin., 2020, 227: 117566.

    43. [43]

      ZUO J, SUN D P, TU L P, WU Y N, CAO Y H, XUE B, ZHANG Y L, CHANG Y L, LIU X M, KONG X G, BUMA W J, MEIJER E J, ZHANG J. Angew. Chem., Int. Ed., 2018, 57(12): 3054-3058.

    44. [44]

      XIE X J, LI Z J, ZHANG Y W, GUO S H, PENDHARKAR A I, LU M, HUANG L, HUANG W, HAN G. Samll, 2017, 13(6): 1602843.

    45. [45]

      HE J J, ZHENG W, LIGMAJER F L, CHAN C F, BAO Z Y, WONG K L, CHEN X Y, HAO J H, DAI J Y, YU S F, LEI D Y. Light: Sci. Appl., 2017, 6: e16217.

    46. [46]

      LI J F, GUO H L, LI Z Y. Photon. Res., 2013, 1(1): 28-41.

    47. [47]

      FANG C H, JIA H L, CHANG S, RUAN Q F, WANG P, CHEN T, WANG J F. Energy Environ. Sci., 2014, 7(10): 3431-3438.

    48. [48]

      GAO Wei, WANG Bo-Yang, HAN Qin-Yan, HAN Shan-Shan, CHENG Xiao-Tong, ZHANG Chen-Xue, SUN Ze-Yu, LIU Lin, YAN Xue-Wen, WANG Yong-Kai, DONG Jun. Acta Physica sini

    49. [49]

      KANG F W, HE J J, SUN T Y, BAO Z Y, WANG F, LEI D Y. Adv. Funct. Mater., 2017, 27(36): 1701842.

    50. [50]

      CALOS L D, FERREIRA R A S, BERMUDEZ V D Z, RIBEIRO S J. Adv. Mater., 2009, 21(5): 509-534.

    51. [51]

      GU B, ZHANG Q C. Adv. Sci., 2018, 5(3): 1700609.

    52. [52]

      TAN G R, WANG M H, HSU C Y, CHEN N G, ZHANG Y. Adv. Optical Mater., 2016, 4(7): 984-997.

    53. [53]

      ZHU X H, ZHANG J, LIU J L, ZHANG Y. Adv. Sci., 2019, 6(22): 1901358.

    54. [54]

    55. [55]

      WOLFBEIS O S. Chem. Soc. Rev., 2015, 44(14): 4743-4768.

    56. [56]

      ZHANG Z M, SHIKHA S, LIU J L, ZHANG J, MEI Q S, ZHANG Y. Anal. Chem., 2019, 91: 548-568.

    57. [57]

      LI S H, WEI X D, LI S S, ZHU C M, WU C H. Int. J. Nanomed., 2020, 15: 9431-9445.

    58. [58]

      WEN S H, ZHOU J J, ZHENG K Z, BEDNARKIEWICZ A, LIU X G, JIN D Y. Nat. Commun., 2018, 9: 2415.

    59. [59]

      LIANG G F, WANG H J, SHI H, WANG H T, ZHU M X, JING A H, LI J H, LI G D. J. Nanobiotechnol., 2020, 18(1): 154.

    60. [60]

      CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Biomaterials, 2008, 29(7): 937-943.

    61. [61]

      HUANG M, WANG L J, ZHANG X J, ZHOU J, LIU L H, PAN Y F, YU B, YU Z S. Nano, 2017, 12(5): 1750057.

    62. [62]

      REDDY K L, PRABHAKAR N, ARPPE R, ROSENHOLM J M, KRISHNAN V. J. Mater. Sci., 2017, 52(10): 5738-5750.

    63. [63]

      YANG G, CAO Y, YAN B, LV Q, YU J B, ZHAO F S, CHEN Z H, YANG H R, CHEN M X, JIN Z S. Oncotarget, 2018, 9(24): 16758-16774.

    64. [64]

      VU D T, VU-LE T T, NGUYEN V N, LE Q M, WANG C R C, CHAU L K, YANG T S, CHAN M W Y, LEE C I, TING C C, LIN J Y, KAN H C, HSU C C. Int. J. Smart Nano Mater., 2021, 12(1): 49-71.

    65. [65]

      ZOU X M, XU M, YUAN W, WANG Q H, SHI Y B, FENG W, LI F Y. Chem. Conmmun., 2016, 52(91): 13389-13392.

    66. [66]

      CHEN G Y, SHAO W, VALIEV R R, OHULCHANSKYY T Y, HE G S, AGREN H, PRASAD P N. Adv. Optical Mater., 2016, 4(11): 1760-1766.

    67. [67]

      WU X, ZHANG Y W, TAKLE K, BILSEL O, LI Z J, LEE H, ZHANG Z J, LI D S, FAN W, DUAN C Y, CHAN E M, LOIS C, XIANG Y, HAN G. ACS Nano, 2016, 10(1): 1060-1066.

    68. [68]

      CHHETRI B P, KARMAKAR A, GHOSH A. Part. Part. Syst. Charact., 2019, 36(8): 1900153.

    69. [69]

      LI X, ZHANG X N, LI X D, CHANG J. Cancer Biol. Med., 2016, 13(3): 339-348.

    70. [70]

      ZHOU J, SUN Y, DU X X, XIONG L Q, HU H, LI F Y. Biomaterials, 2010, 31(12): 3287-3295.

    71. [71]

      LIU Y, KANG N, LV J, ZHOU Z J, ZHAO Q L, MA L C, CHEN Z, REN L, NIE L M. Adv. Mater., 2016, 28(30): 6411-6419.

    72. [72]

      LUO Y, ZHANG W, LIAO Z F, YANG S N, YANG S T, LI X H, ZUO F, LUO J B. Nanomaterials, 2018, 8(7): 466.

    73. [73]

      KANG N, LIU Y, ZHOU Y M, WANG D, CHEN C, YE S F, NIE L M, REN L. Adv. Healthcare Mater., 2016, 5(11): 1356-1363.

    74. [74]

      HE F, YANG G X, YANG P P, YU Y X, LV R C, LI C X, DAI Y L, GAI S L, LIN J. Adv. Funct. Mater., 2015, 25(25): 3966-3976.

    75. [75]

      LIU F Y, HE X X, LEI Z, LIU L, ZHANG J P, YOU H P, ZHANG H M, WANG Z X. Adv. Healthcare Mater., 2015, 4(4): 559-568.ca, 2020, 69(18): 184213.

    76. [76]

      SUN M Z, XU L G, MA W, WU X L, KUANG H, WANG L B, XU C L. Adv. Mater., 2016, 28(5): 898-904.

    77. [77]

      LU Y Q, ZHAO J B, ZHANG R, LIU Y J, LIU D M, GOLDYS E M, YANG X S, XI P, SUNNA A, LU J, SHI Y, LEIF R C, HUO Y J, SHEN J, PIPER J A, ROBINSON J P, JIN D Y. Nat. Photonics, 2014, 8(1): 33-37.

    78. [78]

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    4. [4]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(0)
  • Abstract views(840)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return