Citation: WEN Xiao-Yan,  XU Yan-Yan,  LI Mao-Gang,  ZHANG Tian-Long,  TANG Hong-Sheng,  LI Hua. Study on Transfer Performance of Methanol Gasoline Quantitative Analysis Model Based on Near-Infrared Spectroscopy Combined with Piecewise Direct Standardization[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(10): 1758-1765. doi: 10.19756/j.issn.0253-3820.211033 shu

Study on Transfer Performance of Methanol Gasoline Quantitative Analysis Model Based on Near-Infrared Spectroscopy Combined with Piecewise Direct Standardization

  • Corresponding author: TANG Hong-Sheng,  LI Hua, 
  • Received Date: 14 January 2021
    Revised Date: 8 June 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.22073074, 21873076, 21675123, 21605123).

  • The transfer performance of near infrared (NIR) spectrometry quantitative analysis model for methanol gasoline was studied based on piecewise direct standardization (PDS) algorithm. First, in the experimental environment, 20 methanol gasoline samples were prepared and their NIR spectra were collected. Secondly, the influence of different NIR wave ranges as input variables on the prediction performance of the model was explored. Thirdly, the effects of different spectral pretreatment methods on the NIR spectra were investigated. Based on the spectral data preprocessed by normalization (Nor) and multiple scattering correction (MSC), the initial PLS calibration model and PDS-PLS transfer model were constructed. Finally, to further verify the prediction performance of PDS-PLS model, PLS model based on original spectrum, domain adaptive (DA) and kernel domain adaptive (KDA) were constructed. The results showed that, compared with other PLS models, the model constructed by PDS-PLS calibration model had a significant improvement on the prediction performance. The coefficient of determination of prediction set (RP2) was 0.9984, the root mean square error of prediction set (RMSEP) was 0.0056, and the mean relative error (MREP) was 4.36%. The results showed that PDS-PLS was a simple and efficient model transfer method for NIR quantitative analysis of methanol gasoline.
  • 加载中
    1. [1]

      SHAN Y L, GUAN D B, MENG J, LIU Z, SCHROEDER H, LIU J H, MI Z F. Appl. Energy, 2018, 226:494-502.

    2. [2]

      LI M G, XUE J, DU Y, ZHANG T L, LI H. Energy Fuels, 2019, 33(12):12286-12294.

    3. [3]

      WANG X, GE Y S, LIU L L, PENG Z H, HAO L J, YIN H, DING Y, WANG J F. Appl. Energy, 2015, 157:134-143

    4. [4]

      JECZMIONEK L, DANEK B, PALUCHOWSKA M, KRASODOMSKI W. Energy Fuels, 2017, 31(1):504-513.

    5. [5]

      SHARMA N, AGARWAL A K. Energy Fuels, 2017, 31:4155-4164.

    6. [6]

    7. [7]

      DAI P P, GE Y S, LIN Y M, SU S, LIANG B. Fuel, 2013, 113:10-16.

    8. [8]

      LEE D M, LEE D H, HWANG I H. Energy Fuels, 2018, 32(10):10556-10562.

    9. [9]

      LI J R, DAI L K. Sens. Actuators, B, 2012, 173:385-390.

    10. [10]

      BLOCH M G, CALLEN R B, STOCKINGER J H. J. Chromatogr. Sci., 1977, 15(11):504-512.

    11. [11]

    12. [12]

    13. [13]

    14. [14]

      LUO S L, ZHANG E L, SU Y P, CHENG T M, SHI C M. Biomaterials, 2011, 32(29):7127-7138.

    15. [15]

    16. [16]

    17. [17]

      WULFERT F, KOK W T, SMILDE A K. Anal. Chem., 1998, 70(9):1761-1767.

    18. [18]

    19. [19]

    20. [20]

      GALVAN D, BONA E, BORSATO D, DANIELI E, KILLNER M H M. Anal. Chem., 2020, 92(19):12809-12816.

    21. [21]

      PEREIRA C F, PIMENTEL M F, GALVAO R K H, HONORATO F A, STRAGEVITCH L, MARTINS M N. Anal. Chim. Acta, 2008, 611(1):41-47.

    22. [22]

      HUANG G Z, CHEN X J, LI L M, CHEN X, YUAN L M, SHI W. Chemom. Intell. Lab. Syst., 2020, 201:103986.

    23. [23]

      GELADI P, KOWALSKI B. Anal. Chim. Acta, 1986, 185:1-17.

    24. [24]

      LANGERODI N R, ZELLINGER W, LUGHOFER E, PLATZ S S. Anal. Chem., 2018, 90(11):6693-6701.

    25. [25]

      FEUNDALE R N, WOODY N A, TAN H W, MYLES A J, BROWN S D, FERRE J. Chemom. Intell. Lab. Syst., 2002, 64(2):181-192.

    26. [26]

      CHEN Z P, LOVETT D, MORRIS J L. J. Process Control, 2011, 21(10):1467-1482.

    27. [27]

    28. [28]

  • 加载中
    1. [1]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    6. [6]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    7. [7]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(12)
  • Abstract views(726)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return