Citation: SONG Lu,  ZUO Xiao-Lei,  LI Min. Research on Flexible Wearable Sensors and Their Applications[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1661-1672. doi: 10.19756/j.issn.0253-3820.210905 shu

Research on Flexible Wearable Sensors and Their Applications

  • Corresponding author: LI Min, mlisinap@163.com
  • Received Date: 14 December 2021
    Revised Date: 16 February 2022

    Fund Project: Supported by the National Key Research and Development Program of China (No.2020YFA0909000) and the National Natural Science Foundation of China (Nos.22025404, 21904086).

  • Wearable sensors can fit human skin or integrate with textiles to monitor the physiological environment of human body with high sensitivity and integration. In recent years, wearable sensors have been widely used in monitoring sweat, breathing, heart rate and blood oxygen and other physiological parameters. However, wearable sensors should be attached to skin with well comfortability. Also, they should be avoided bringing negative results when people participate activities. Consequently, flexibility is an important parameter for evaluating and improving the performances of wearable sensors. In this review, the development of different flexible materials was summarized. Besides, the construction and application of wearable sensors based on different flexible materials were also discussed. Additionally, the current challenges, coping strategies and development direction of these flexible wearable sensors were discussed.
  • 加载中
    1. [1]

      KIM J, CAMPBELL A S, DEAVILA B E, WANG J. Nat. Biotechnol., 2019, 37(4):389-406.

    2. [2]

      KHAN Y, OSTFELD A E, LOCHNER C M, PIERRE A, ARIAS A C. Adv. Mater., 2016, 28(22):4373-4395.

    3. [3]

      O'NEILL S J K, GONG H X, MATSUHISA N, CHEN S C, MOON H, WU H C, CHEN X F, CHEN X D, BAO Z N. Adv. Mater. Interfaces, 2020, 7(18):2000875.

    4. [4]

      BOUTRY C M, NEGRE M, JORDA M, VARDOULIS O, CHORTOS A, KHATIB O, BAO Z N. Sci. Robot., 2018, 3(24):eaau6914.

    5. [5]

      YOU I, MACKANIC D G, MATSUHISA N, KANG J, KWON J, BEKER L, MUN J, SUH W, KIM T Y, TOK J B H, BAO Z N, JEONG U. Science, 2020, 370(6519):961-965.

    6. [6]

      CHEN Y H, LU S Y, ZHANG S S, LI Y, QU Z, CHEN Y, LU B W, WANG X Y, FENG X. Sci. Adv., 2017, 3(12):e1701629.

    7. [7]

      BARIYA M, NYEIN H Y Y, JAVEY A. Nat. Electron., 2018, 1(3):160-171.

    8. [8]

      LI M M, CHEN X, LI X T, DONG J, ZHAO X, ZHANG Q H. ACS Appl. Mater. Interfaces, 2021, 13(36):43323-43332.

    9. [9]

      LIAO M H, LIAO H, YE J J, WAN P B, ZHANG L Q. ACS Appl. Mater. Interfaces, 2019, 11(50):47358-47364.

    10. [10]

      XU Z Y, SONG J Y, LIU B R, LV S P, GAO F X, LUO X L, WANG P P. Sens. Actuators, B, 2021, 348:130674.

    11. [11]

      MAMUN M A A,YUCE M R. Adv. Funct. Mater., 2020, 30(51):2005703.

    12. [12]

      ZHU H T, ZHAN L W, DAI Q, XU B, CHEN Y, LU Y Q, XU F. Adv. Opt. Mater., 2021, 9(11):2002206.

    13. [13]

      ROGERS J A, SOMEYA T, HUANG Y G. Science, 2010, 327(5973):1603-1607.

    14. [14]

      LI J, DAI J B, JIANG S X, XIE M, ZHAI T T, GUO L J, CAO S T, XING S, QU Z B, ZHAO Y, WANG F, YANG Y, LIU L, ZUO X L, WANG L H, YAN H, FAN C H. Nat. Commun., 2020, 11(1):2185.

    15. [15]

      YAN Q L, KONG H T, XIA K, ZHANG Y, ALADLBAHI A, SHI J Y, WANG L H, FAN C H, ZHAO Y, ZHU Y. Nucl. Sci. Tech., 2017, 28:11.

    16. [16]

      SHEN J L, TANG Q, LI L, LI J, ZUO X L, QU X M, PEI H, WANG L H, FAN C H. Angew. Chem., Int. Ed., 2017, 56(50):16077-16081.

    17. [17]

      KWON P S, REN S K, KWON S J, KIZER M E, KUO L L, XIE M, ZHU D, ZHOU F, ZHANG F M, KIM D, FRASER K, KRAMER L D, SEEMAN N C, DORDICK J S, LINHARDT R J, CHAO J, WANG X. Nat. Chem., 2020, 12(1):26-35.

    18. [18]

      HUANG Q L, CHEN B, SHEN J L, LIU L, LI J J, SHI J Y, LI Q, ZUO X L, WANG L H, FAN C H, LI J. J. Am. Chem. Soc., 2021, 143(28):10735-10742.

    19. [19]

      YAO G B, ZHANG F, WANG F, PENG T H, LIU H, POPPLETON E, SULC P, JIANG S X, LIU L, GONG C, JING X X, LIU X G, WANG L H, LIU Y, FAN C H, YAN H. Nat. Chem., 2020, 12(11):1067-1075.

    20. [20]

      LI M, DING H M, LIN M H, YIN F F, SONG L, MAO X H, LI F, GE Z L, WANG L H, ZUO X L, MA Y Q, FAN C H. J. Am. Chem. Soc., 2019, 141(47):18910-18915.

    21. [21]

      UZUMCU A T, GUNEY O, OKAY O. ACS Appl. Mater. Interfaces, 2018, 10(9):8296-8306.

    22. [22]

      LU S S, WANG S, ZHAO J H, SUN J, YANG X R. Chem. Commun., 2018, 54(36):4621-4624.

    23. [23]

      JIANG C, LI Y S, WANG H, CHEN D S, WEN Y Q. Sens. Actuators, B, 2020, 307:127625.

    24. [24]

      ZHOU X, LI C, SHAO Y, CHEN C, YANG Z Q, LIU D S. Chem. Commun., 2016, 52(70):10668-10671.

    25. [25]

      YUE L, WANG S, WULF V, WILLNER I. Nat. Commun., 2019, 10:4774.

    26. [26]

      CHEN X Q, LISI F, BAKTHAVATHSALAM P, LONGATTE G, HOQUE S, TILLEY R D, GOODING J J. ACS Sens., 2021, 6(2):538-545.

    27. [27]

      FAN C H, WANG S, SCHANZE K, FERNANDEZ L E. ACS Appl. Mater. Interfaces, 2021, 13(8):9289-9290.

    28. [28]

      DUNN M R, JIMENEZ R M, CHAPUT J C. Nat. Rev. Chem., 2017, 1(10):0076.

    29. [29]

      YE D K, LI M, ZHAI T T, SONG P, SONG L, WANG H, MAO X H, WANG F, ZHANG X L, GE Z L, SHI J Y, WANG L H, FAN C H, LI Q, ZUO X L. Nat. Protoc., 2020, 15(7):2163-2185.

    30. [30]

      SONG P, YE D K, ZUO X L, LI J, WANG J B, LIU H J, HWANG M T, CHAO J, SU S, WANG L H, SHI J Y, WANG L H, HUANG W, LAL R, FAN C H. Nano Lett., 2017, 17(9):5193-5198.

    31. [31]

      XIAO M S, LAI W, WANG F, LI L, FAN C H, PEI H. J. Am. Chem. Soc., 2019, 141(51):20354-20364.

    32. [32]

      YANG D Y, HARTMAN M R, DERRIEN T L, HAMADA S, AN D, YANCEY K G, CHENG R, MA M L, LUO D. Acc. Chem. Res., 2014, 47(6):1902-1911.

    33. [33]

      PARK N, UM S H, FUNABASHI H, XU J F, LUO D. Nat. Mater., 2009, 8(5):432-437.

    34. [34]

      NOLL T, WENDERHOLD-REEB S, SCHONHERR H, NOLL G. Angew. Chem., Int. Ed., 2017, 56(39):12004-12008.

    35. [35]

      WANG Y, LI S S, YANG H Y, LUO J. RSC Adv., 2020, 10(26):15328-15345.

    36. [36]

      YIN F, HU J C, HONG Z L, WANG H, LIU G, SHEN J, WANG H L, ZHANG K Q. RSC Adv., 2020, 10(10):5722-5733.

    37. [37]

      ZHONG Y X, ZHANG X, HE Y, PENG H F, WANG G K, XIN G Q. Adv. Funct. Mater., 2018, 28(28):1801998.

    38. [38]

      ZHANG L, DEARMOND D, ALVAREZ N T, MALIK R, OSLIN N, MCCONNELL C, ADUSEI P K, HSIEH Y Y, SHANOV V. Small, 2017, 13(10):1603114.

    39. [39]

      ROY S, DAVID-PUR M, HANEIN Y. ACS Appl. Mater. Interfaces, 2017, 9(40):35169-35177.

    40. [40]

      POLAT E O, MERCIER G, NIKITSKIY I, PUMA E, GALAN T, GUPTA S, MONTAGUT M, PIQUERAS J J, BOUWENS M, DURDURAN T, KONSTANTATOS G, GOOSSENS S, KOPPENS F. Sci. Adv., 2019, 5(9):eaaw7846.

    41. [41]

      CHOI S J, YU H, JANG J S, KIM M H, KIM S J, JEONG H S, KIM I D. Small, 2018, 14(13):1703934.

    42. [42]

      REN H Y, ZHENG L M, WANG G R, GAO X, TAN Z J, SHAN J Y, CUI L Z, LI K, JIAN M Q, ZHU L C, ZHANG Y Y, PENG H L, WEI D, LIU Z F. ACS Nano, 2019, 13(5):5541-5548.

    43. [43]

      ROY S, DAVID-PUR M, HANEIN Y. ACS Appl. Mater. Interfaces, 2017, 9(40):35169-35177.

    44. [44]

      JING C F, LIU W H, HAO H L, WANG H G, MENG F B, LAU D. Nanoscale, 2020, 12(30):16305-16314.

    45. [45]

      PAUL S J, ELIZABETH I, GUPTA B K. ACS Appl. Mater. Interfaces, 2021, 13(7):8871-8879.

    46. [46]

      CHOI J, JUNG Y, DUN C C, PARK K T, GORDON M P, HAAS K, YUAN P Y, KIM H, PARK C R, URBAN J J. ACS Appl. Energy Mater., 2020, 3(1):1199-1206.

    47. [47]

      YIN F Q, LU H J, PAN H, JI H J, PEI S, LIU H, HUANG J Y, GU J H, LI M Y, WEI J. Sci. Rep., 2019, 9:2403.

    48. [48]

      ZHAO Y, NAKAJIMA T, YANG J J, KUROKAWA T, LIU J, LU J S, MIZUMOTO S, SUGAHARA K, KITAMURA N, YASUDA K, DANIELS A U, GONG J P. Adv. Mater., 2014, 26(3):436-442.

    49. [49]

      MING Z Z, PANG Y, LIU J Y. Adv. Mater., 2020, 32(8):1906870.

    50. [50]

      ZENG X W, WANG Z X, ZHANG H, YANG W, XIANG L, ZHAO Z Z, PENG L M, HU Y F. ACS Appl. Mater. Interfaces, 2019, 11(23):21218-21226.

    51. [51]

      WU Y Y, MECHAEL S S, CHEN Y T, CARMICHAEL T B. ACS Appl. Mater. Interfaces, 2020, 12(46):51679-51687.

    52. [52]

      LIU H B, JIANG H, DU F, ZHANG D P, LI Z J, ZHOU H W. ACS Sustainable Chem. Eng., 2017, 5(11):10538-10543.

    53. [53]

      WANG S Q, WU Y J, GU Y, LI T, LUO H, LI L H, BAI Y Y, LI L L, LIU L, CAO Y D, DING H Y, ZHANG T. Anal. Chem., 2017, 89(19):10224-10231.

    54. [54]

      YUAN Z, HOU L, BARIYA M, NYEIN H Y Y, TAI L C, JI W B, LI L, JAVEY A. Lab Chip, 2019, 19(19):3179-3189.

    55. [55]

      NYEIN H Y Y, BARIYA M, TRAN B, AHN C H, BROWN B J, JI W, DAVIS N, JAVEY A. Nat. Commun., 2021, 12(1):1823.

    56. [56]

      WEI X F, TIAN T, JIA S S, ZHU Z, MA Y L, SUN J J, LIN Z Y, YANG C Y. Anal. Chem., 2015, 87(8):4275-4282.

    57. [57]

      MOU L, XIA Y, JIANG X Y. Anal. Chem., 2021, 93(33):11525-11531.

    58. [58]

      ZHU J, LIU S B, HU Z H, ZHANG X Z, YI N, TANG K R, DEXHEIMER M G, LIAN X J, WANG Q, YANG J, GRAY J, CHENG H Y. Biosens. Bioelectron., 2021, 193:113606.

    59. [59]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVEY A. Nature, 2016, 529(7587):509-514.

    60. [60]

      SEMPIONATTO J R, LIN M Y, YIN L, DE LA PAZ E, PEI K, SONSA-ARD T, SILVA A N D, KHORSHED A A, ZHANG F Y, TOSTADO N, XU S, WANG J. Nat. Biomed. Eng., 2021, 5(7):737-748.

    61. [61]

      ZHU Z, WU C C, LIU H P, ZOU Y, ZHANG X L, KUANG H Z, YANG C Y, TAN W H. Angew. Chem., Int. Ed., 2010, 49(6):1052-1056.

    62. [62]

      KIM J, KIM M, LEE M S, KIM K, JI S, KIM Y T, PARK J, NA K, BAE K H, KIM H K, BIEN F, LEE C Y, PARK J U. Nat. Commun., 2017, 8:14997.

    63. [63]

      SHEN S, XIAO X, XIAO X, CHEN J. Chem. Commun., 2021, 57(48):5871-5879.

    64. [64]

      KWAK Y H, KIM W, PARK K B, KIM K, SEO S. Biosens. Bioelectron., 2017, 94:250-255.

    65. [65]

      TAKEI K, HONDA W, HARADA S, ARIE T, AKITA S. Adv. Healthc. Mater., 2015, 4(4):487-500.

    66. [66]

      WANG C H, QI B Y, LIN M Y, ZHANG Z R, MAKIHATA M, LIU B Y, ZHOU S, HUANG Y H, HU H J, GU Y, CHEN Y M, LEI Y S, LEE T, CHIEN S, JANG K I, KISTLER E B, XU S. Nat. Biomed. Eng., 2021, 5:749-758.

    67. [67]

      CHANG H, KIM S, KANG T H, LEE S W, YANG G T, LEE K Y, YI H. ACS Appl. Mater. Interfaces, 2019, 11(35):32291-32300.

    68. [68]

      KIREEV D, AMERI S K, NEDERVELD A, KAMPFE J, JANG H, LU N, AKINWANDE D. Nat. Protoc., 2021, 16(5):2395-2417.

  • 加载中
    1. [1]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(62)
  • Abstract views(1610)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return