Citation: LIU Meng-Yuan,  WANG Shu-Qi,  ZHENG Hui,  YANG Xian-Qing,  ZHANG Ting. Research Progress of Flexible Wearable Sweat Sensors Based on Microchannel Design[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1627-1638. doi: 10.19756/j.issn.0253-3820.210902 shu

Research Progress of Flexible Wearable Sweat Sensors Based on Microchannel Design

  • Corresponding author: WANG Shu-Qi,  ZHANG Ting, 
  • Received Date: 23 December 2021
    Revised Date: 16 February 2022

    Fund Project: Supported by the National Key Research and Development Program of China (No.2018YFB1304700) and the National Natural Science Foundation of China (Nos.62071463, 61801473, 62125112).

  • In recent years, with the development of flexible electronics and microfluids, various flexible wearable sweat sensors based on microchannel have been developed, and exhibit excellent development prospect. In this paper, the advantages of flexible wearable sensors based on microchannel design for sweat detection were introduced, and the research progress of the principles of structural design, detection methods and microchannel sweat detection sensors was summarized. The deficiencies and limitations of microchannel sweat sensors were analyzed.The review pointed out that the sweat sensors based on microfluidic channel design should be developed in the direction of low cost and mass production, and it was important to further study the relationship between sweat parameters and human physiological health.
  • 加载中
    1. [1]

      IQBAL S M A, MAHGOUB I, DU E, LEAVITT M A, ASGHAR W. npj Flexible Electron., 2021, 5(1):9.

    2. [2]

      QIAO L, BENZIGAR M R, SUBRAMONY J A, LOVELL N H, LIU G J A A M, INTERFACE S. ACS Appl. Mater. Interfaces, 2020, 12(30):34337-34361.

    3. [3]

      RAY T R, CHOI J, BANDODKAR A J, KRISHNAN S, GUTRUF P, TIAN L M, GHAFFARI R, ROGERS J A. Chem. Rev., 2019, 119(8):5461-5533.

    4. [4]

      HEIKENFELD J, JAJACK A, ROGERS J, GUTRUF P, TIAN L, PAN T, LI R, KHINE M, KIM J, WANG J, KIM J. Lab Chip, 2018, 18(2):217-248.

    5. [5]

      KIM J, CAMPBELL A S, DE AVILA B E F, WANG J. Nat. Biotechnol., 2019, 37(4):389-406.

    6. [6]

      MA C, MA M G, SI C L, JI X X, WAN P B. Adv. Funct. Mater., 2021, 31(22):2009524.

    7. [7]

      LIU Y, PHARR M, SALVATORE G A. ACS Nano, 2017, 11(10):9614-9635.

    8. [8]

      BANDODKAR A J, WANG J. Trends Biotechnol., 2014, 32(7):363-371.

    9. [9]

      YANG Y R, GAO W. Chem. Soc. Rev., 2019, 48(6):1465-1491.

    10. [10]

      LIN Y, BARIYA M, JAVEY A. Adv. Funct. Mater., 2020, 31(39):2008087.

    11. [11]

      GHAFFARI R, ROGERS J A, RAY T R. Sens. Actuators, B, 2021, 332:129447.

    12. [12]

      YU H, SUN J J N, ENGINEERING P. Nanotechnol. Precis. Eng., 2020, 3(3):126-140.

    13. [13]

      WANG Z, SHIN J, PARK J H, LEE H, KIM D H, LIU H. Adv. Funct. Mater., 2020, 31(12):2008130.

    14. [14]

      MOHAN A M V, RAJENDRAN V, MISHRA R K, JAYARAMAN M. TrAC, Trends Anal. Chem., 2020, 131:116024.

    15. [15]

      ZHONG B W, JIANG K, WANG L L, SHEN G Z. Adv. Sci., 2021, 9(1):2103257.

    16. [16]

      RAY T R, IVANOVIC M, CURTIS P M, FRANKLIN D, GUVENTURK K, JEANG W J, CHAFETZ J, GAERTNER H, YOUNG G, REBOLLO S, MODEL J B, LEE S P, CIRALDO J, REEDER J T, HOURLIER-FARGETTE A, BANDODKAR A J, CHOI J, ARANYOSI A J, GHAFFARI R, MCCOLLEY S A, HAYMOND S, ROGERS J A. Sci. Transl. Med., 2021, 13(587):eabd8109.

    17. [17]

      ZHAI Q, YAP L W, WANG R, GONG S, GUO Z, LIU Y, LYU Q, WANG J, SIMON G P, CHENG W. Anal. Chem., 2020, 92(6):4647-4655.

    18. [18]

      GAO W, EMAMINEJAD S, NYEIN H Y Y, CHALLA S, CHEN K V, PECK A, FAHAD H M, OTA H, SHIRAKI H, KIRIYA D, LIEN D H, BROOKS G A, DAVIS R W, JAVEY A. Nature, 2016, 529(7587):509-514.

    19. [19]

      HAMMOND K B, TURCIOS N L, GIBSON L E. J. Pediatr., 1994, 124(2):255-260.

    20. [20]

      POLETTI F, ZANFROGNINI B, FAVARETTO L, QUINTANO V, SUN J, TREOSSI E, MELUCCI M, PALERMO V, ZANARDI C. Sens. Actuators, B, 2021, 344:130253.

    21. [21]

      LEE H B, MEESEEPONG M, TRAN QUANG T, KIM B Y, LEE N E. Biosens. Bioelectron., 2020, 156:112133.

    22. [22]

      TANG W, YIN L, SEMPIONATTO J R, MOON J M, TEYMOURIAN H, WANG J. Adv. Mater., 2021, 33(18):2008465.

    23. [23]

      CHOI J, GHAFFARI R, BAKER L B, ROGERS J A. Sci. Adv., 2018, 4(2):eaar3921.

    24. [24]

      NYEIN H Y Y, BARIYA M, TRAN B, AHN C H, BROWN B J, JI W, DAVIS N, JAVEY A. Nat. Commun., 2021, 12(1):1823.

    25. [25]

      ZHAO F J, BONMARIN M, CHEN Z C, LARSON M, FAY D, RUNNOE D, HEIKENFELD J. Lab Chip, 2020, 20(1):168-174.

    26. [26]

      KWON K, KIM J U, DENG Y, KRISHNAN S R, CHOI J, JANG H, LEE K, SU C J, YOO I, WU Y, LIPSCHULTZ L, KIM J H, CHUNG T S, WU D, PARK Y, KIM T I, GHAFFARI R, LEE S, HUANG Y, ROGERS J A. Nat. Electron., 2021, 4(4):302-314.

    27. [27]

      BAKER L B, WOLFE A S. Eur. J. Appl. Physiol., 2020, 120(4):719-752.

    28. [28]

      BARNES K A, ANDERSON M L, STOFAN J R, DALRYMPLE K J, REIMEL A J, ROBERTS T J, RANDELL R K, UNGARO C T, BAKER L B. J. Sports Sci., 2019, 37(20):2356-2366.

    29. [29]

      ZHAO Z, LI Q, DONG Y, GONG J, LI Z, ZHANG J. Sens. Actuators, B, 2022, 353:131154.

    30. [30]

      SON J, BAE G Y, LEE S, LEE G, KIM S W, KIM D, CHUNG S, CHO K. Adv. Mater., 2021, 33(40):2102740.

    31. [31]

      CHEN Y C, SHAN S S, LIAO Y T, LIAO Y C. Lab Chip, 2021, 21(13):2524-2533.

    32. [32]

      ZHANG Y X, CHEN Y, HUANG J L, LIU Y C Y, PENG J F, CHEN S D, SONG K, OUYANG X P, CHENG H Y, WANG X F. Lab Chip, 2020, 20(15):2635-2645.

    33. [33]

      WANG S, WU Y, GU Y, LI T, LUO H, LI L H, BAI Y, LI L, LIU L, CAO Y, DING H, ZHANG T. Anal. Chem., 2017, 89(19):10224-10231.

    34. [34]

      SCHAZMANN B, MORRIS D, SLATER C, BEIRNE S, FAY C, REUVENY R, MOYNA N, DIAMOND D. Anal. Methods, 2010, 2(4):342-348.

    35. [35]

      PIROVANO P, DORRIAN M, SHINDE A, DONOHOE A, BRADY A J, MOYNA N M, WALLACE G, DIAMOND D, MCCAUL M. Talanta, 2020, 219:121145.

    36. [36]

      WANG S, BAI Y, YANG X, LIU L, LI L, LU Q, LI T, ZHANG T. Talanta, 2020, 214:120869.

    37. [37]

      EMAMINEJAD S, GAO W, WU E, DAVIES Z A, NYEIN H Y Y, CHALLA S, RYAN S P, FAHAD H M, CHEN K, SHAHPAR Z, TALEBI S, MILLA C, JAVEY A, DAVIS R W. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(18):4625-4630.

    38. [38]

      PATTERSON M J, GALLOWAY S D R, NIMMO M A. Exp. Physiol., 2000, 85(6):869-875.

    39. [39]

      NYEIN H Y Y, GAO W, SHAHPAR Z, EMAMINEJAD S, CHALLA S, CHEN K, FAHAD H M, TAI L C, OTA H, DAVIS R W, JAVEY A. ACS Nano, 2016, 10(7):7216-7224.

    40. [40]

      HE X, XU T, GU Z, GAO W, XU L P, PAN T, ZHANG X. Anal. Chem., 2019, 91(7):4296-4300.

    41. [41]

      GUINOVART T, BANDODKAR A J, WINDMILLER J R, ANDRADE F J, WANG J. Analyst, 2013, 138(22):7031-7038.

    42. [42]

      BANDODKAR A J, CHOI J, LEE S P, JEANG W J, AGYARE P, GUTRUF P, WANG S Q, SPONENBURG R A, REEDER J T, SCHON S, RAY T R, CHEN S L, MEHTA S, RUIZ S, ROGERS J A. Adv. Mater., 2019, 31(32):1902109.

    43. [43]

      GAO W, NYEIN H Y Y, SHAHPAR Z, FAHAD H M, CHEN K, EMAMINEJAD S, GAO Y J, TAI L C, OTA H, WU E, BULLOCK J, ZENG Y P, LIEN D H, JAVEY A. ACS Sens., 2016, 1(7):866-874.

    44. [44]

      ANASTASOVA S, CREWTHER B, BEMBNOWICZ P, CURTO V, IP H M D, ROSA B, YANG G Z. Biosens. Bioelectron., 2017, 93:139-145.

    45. [45]

      LI M, WANG L, LIU R, LI J, ZHANG Q, SHI G, LI Y, HOU C, WANG H. Biosens. Bioelectron., 2021, 174:112828.

    46. [46]

      ABELLAN-LLOBREGAT A, JEERAPAN I, BANDODKAR A, VIDAL L, CANALS A, WANG J, MORALLON E. Biosens. Bioelectron., 2017, 91:885-891.

    47. [47]

      KIM J, JEERAPAN I, IMANI S, CHO T N, BANDODKAR A, CINTI S, MERCIER P P, WANG J. ACS Sens., 2016, 1(8):1011-1019.

    48. [48]

      KINNAMON D, GHANTA R, LIN K C, MUTHUKUMAR S, PRASAD S. Sci. Rep., 2017, 7:13312.

    49. [49]

      WINDMILLER J R, BANDODKAR A J, VALDES-RAMIREZ G, PARKHOMOVSKY S, MARTINEZ A G, WANG J. Chem. Commun., 2012, 48(54):6794-6796.

    50. [50]

      YANG Y, SONG Y, BO X, MIN J, PAK O S, ZHU L, WANG M, TU J, KOGAN A, ZHANG H, HSIAI T K, LI Z, GAO W. Nat. Biotechnol., 2020, 38(2):217-224.

    51. [51]

      HOURLIER-FARGETTE A, SCHON S, XUE Y, AVILA R, LI W, GAO Y, LIU C, KIM S B, RAJ M S, FIELDS K B, PARSONS B V, LEE K, LEE J Y, CHUNG H U, LEE S P, JOHNSON M, BANDODKAR A J, GUTRUF P, MODEL J B, ARANYOSI A J, CHOI J, RAY T R, GHAFFARI R, HUANG Y, ROGERS J A. Lab Chip, 2020, 20(23):4391-4403.

    52. [52]

      LEGNER C, KALWA U, PATEL V, CHESMORE A, PANDEY S. Sens. Actuators, A, 2019, 296:200-221.

    53. [53]

      CHOI J, CHEN S, DENG Y, XUE Y, REEDER J T, FRANKLIN D, OH Y S, MODEL J B, ARANYOSI A J, LEE S P, GHAFFARI R, HUANG Y, ROGERS J A. Adv. Healthcare Mater., 2021, 10(4):2000722.

    54. [54]

      CHOI D H, GONZALES M, KITCHEN G B, PHAN D T, SEARSON P C. ACS Sens., 2020, 5(12):3821-3826.

    55. [55]

      KIM S B, LEE K, RAJ M S, LEE B, REEDER J T, KOO J, HOURLIER-FARGETTE A, BANDODKAR A J, WON S M, SEKINE Y, CHOI J, ZHANG Y, YOON J, KIM B H, YUN Y, LEE S, SHIN J, KIM J, GHAFFARI R, ROGERS J A. Small, 2018, 14(45):1802876.

    56. [56]

      CHUNG M, FORTUNATO G, RADACSI N. J. R. Soc., Interface, 2019, 16(159):20190217.

    57. [57]

      ZAMARAYEVA A M, YAMAMOTO N A D, TOOR A, PAYNE M E, WOODS C, PISTER V I, KHAN Y, EVANS J W, ARIAS A C. APL Mater., 2020, 8(10):100905.

    58. [58]

      HUANG X, YEO W H, LIU Y, ROGERS J A. Biointerphases, 2012, 7(1-4):52.

    59. [59]

      TANG L, LEE N Y. Lab Chip, 2010, 10(10):1274-1280.

    60. [60]

      WU W, WU J, KIM J H, LEE N Y. Lab Chip, 2015, 15(13):2819-2825.

    61. [61]

      ARAN K, SASSO L A, KAMDAR N, ZAHN J D. Lab Chip, 2010, 10(5):548-552.

    62. [62]

      NGUYEN T, JUNG S H, LEE M S, PARK T E, AHN S K, KANG J H. Lab Chip, 2019, 19(21):3706-3713.

    63. [63]

      YUAN Z, HOU L, BARIYA M, NYEIN H Y Y, TAI L C, JI W B, LIABC L, JAVEY A. Lab Chip, 2019, 19(19):3179-3189.

    64. [64]

      WEI L, FANG G, KUANG Z, CHENG L, WU H, GUO D, LIU A. Sens. Actuators, B, 2021, 353:131085.

    65. [65]

      ALVAREZ-BRAÑA Y, ETXEBARRIA-ELEZGARAI J, RUIZ DE LARRINAGA-VICENTE L, BENITO-LOPEZ F, BASABE-DESMONTS L. Sens. Actuators, B, 2021, 342:129991.

    66. [66]

      REEDER J T, CHOI J, XUE Y G, GUTRUF P, HANSON J, LIU M, RAY T, BANDODKAR A J, AVILA R, XIA W, KRISHNAN S, XU S, BARNES K, PAHNKE M, GHAFFARI R, HUANG Y, ROGERS J A. Sci. Adv., 2019, 5(1):eaau6356.

    67. [67]

      REEDER J T, XUE Y, FRANKLIN D, DENG Y, CHOI J, PRADO O, KIM R, LIU C, HANSON J, CIRALDO J, BANDODKAR A J, KRISHNAN S, JOHNSON A, PATNAUDE E, AVILA R, HUANG Y, ROGERS J A. Nat. Commun., 2019, 10:5513.

    68. [68]

      BAKER L B, MODEL J B, BARNES K A, ANDERSON M L, LEE S P, LEE K A, BROWN S D, REIMEL A J, ROBERTS T J, NUCCIO R P, BONSIGNORE J L, UNGARO C T, CARTER J M, LI W, SEIB M S, REEDER J T, ARANYOSI A J, ROGERS J A, GHAFFARI R. Sci. Adv., 2020, 6(50):eabe3929.

    69. [69]

      NYEIN H Y Y, BARIYA M, KIVIMÄKI L, UUSITALO S, LIAW T S, JANSSON E, AHN C H, HANGASKY J A, ZHAO J, LIN Y, HAPPONEN T, CHAO M, LIEDERT C, ZHAO Y, TAI L C, HILTUNEN J, JAVEY A. Sci. Adv., 2019, 5(8):eaaw9906.

    70. [70]

      JIA T, WANG Y, DOU Y, LI Y, DE ANDRADE M J, WANG R, FANG S, LI J, YU Z, QIAO R, LIU Z, CHENG Y, SU Y, MINARY-JOLANDAN M, BAUGHMAN R H, QIAN D, LIU Z. Adv. Funct. Mater., 2019, 29(18):1808241.

    71. [71]

      LENG X, ZHOU X, LIU J, XIAO Y, SUN J, LI Y, LIU Z. Mater. Horiz., 2021, 8(5):1538-1546.

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    3. [3]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    10. [10]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    15. [15]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    16. [16]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    17. [17]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(23)
  • Abstract views(1037)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return