Citation: LIN Bing-Yong,  WANG Yue-Liang,  LIN Zhen-Yu,  GUO Long-Hua. Fabrication and Application of Noble Metal Nanocomposites-Based Surface-Enhanced Raman Scattering Active Substrate[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 653-665. doi: 10.19756/j.issn.0253-3820.210897 shu

Fabrication and Application of Noble Metal Nanocomposites-Based Surface-Enhanced Raman Scattering Active Substrate

  • Corresponding author: WANG Yue-Liang,  GUO Long-Hua, 
  • Received Date: 20 December 2021
    Revised Date: 12 February 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.22074054), the Key Research and Development Program of Zhejiang Province, China (No.2020C02022), the Nature Sciences Funding of Zhejiang Province, China (Nos.Q20B050002,LQ20B05004) and the Special Support Plan for High-level Talents in Zhejiang Province, China (No.2021R52044).

  • With the rapid development of nanotechnology and laser technology, surface-enhanced Raman scattering (SERS) technology has flourished with a great leap. As an analysis and detection technology for fast, nondestructive, and ultra-sensitive response to the fingerprint information of the target molecule, SERS technology has been widely applied in the field of food detection, environmental monitoring and clinical diagnosis. Fabrication of SERS substrate is the committed step of achieving the ultra-sensitive detection in various fields using SERS technology. At present, the SERS activity, homogeneity, and other properties of SERS substrates which are constructed by single noble metal nanomaterials through complex and time-consuming methods cannot fit the demand of the point-of-care detection in various fields. Therefore, more and more research scholars focus on the development of simple and rapid methods to fabrication of multi-functional composite SERS substrates and application of these composite SERS substrates into the field of food detection, environmental monitoring and clinical diagnosis. This article mainly reviews the preparation of precious metal composite SERS substrates and their applications in the past years, discusses and analyzes the function and application advantages of multi-functional composite SERS substrates. The forecast of multi-functional composite SERS substrate is also provided at the end of this article.
  • 加载中
    1. [1]

      FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Chem. Phys. Lett., 1974, 26(2):163-166.

    2. [2]

      JEANMAIRE D L, VAN DUYNE R P. J.Electroanal. Chem. Interfacial Electrochem., 1977, 84(1):1-20.

    3. [3]

      ALBRECHT M G, CREIGHTON J A. J. Am. Chem. Soc., 1977, 99(15):5215-5217.

    4. [4]

      LI J F, HUANG Y F, DING Y, YANG Z L, LI S B, ZHOU X S, FAN F R, ZHANG W, ZHOU Z Y, WU D Y, REN B, WANG Z L, TIAN Z Q. Nature, 2010, 464(7287):392-395.

    5. [5]

      SHARMA B, FRONTIERA R R, HENRY A I, RINGE E, VAN DUYNE R P. Mater. Today, 2012, 15(1-2):16-25.

    6. [6]

      LAING S, JAMIESON L E, FAULDS K, GRAHAM D. Nat. Rev. Chem., 2017, 1(8):0060.

    7. [7]

      DING S Y, YI J, LI J F, REN B, WU D Y, PANNEERSELVAM R, TIAN Z Q. Nat. Rev. Mater., 2016, 1(6):16021.

    8. [8]

      WILLETS K A, VAN DUYNE R P. Annu. Rev. Phys. Chem., 2007, 58:267-297.

    9. [9]

      ZONG C, XU M X, XU L J, WEI T, MA X, ZHENG X S, HU R, REN B. Chem. Rev., 2018, 118(10):4946-4980.

    10. [10]

      GERSTEN J, NITZAN A. J. Chem. Phys., 1980, 73(7):3023-3037.

    11. [11]

      JENSEN L, AIKE NS C M, SCHATZ G C. Chem. Soc. Rev., 2008, 37(5):1061-1073.

    12. [12]

      ZHANG L L, HAO R, ZHANG D J, YOU H J, DAI Y Z, LIU W H, FANG J X. Anal. Chem., 2020, 92(14):9838-9846.

    13. [13]

      SÁNCHEZ-IGLESIAS A, WINCKELMANS N, ALTANTZIS T, BALS S, GRZELCZAK M, LIZ-MARZÁN L M. J. Am. Chem. Soc., 2017, 139(1):107-110.

    14. [14]

      FLAURAUD V, MASTRANGELI M, BERNASCONI G D, BUTET J, ALEXANDER D T L, SHAHRABI E, MARTIN O J F, BRUGGER J. Nat. Nanotechnol., 2017, 12(1):73-80.

    15. [15]

      LI J J, YAN H, TAN X C, LU Z C, HAN H Y. Anal. Chem., 2019, 91(6):3885-3892.

    16. [16]

      WU T, LIN Y W. Appl. Surf. Sci., 2018, 435:1143-1149.

    17. [17]

      ZHANG X L, DAI Z G, ZHANG X G, DONG S L, WU W, YANG S K, XIAO X H, JIANG C Z. Sci. China:Phys., Mech. Astron., 2016, 59(12):1-11.

    18. [18]

      ZHANG Y J, SUN H H, GAO R X, ZHANG F, ZHU A N, CHEN L, WANG Y X. Sens. Actuators, B, 2018, 272:34-42.

    19. [19]

      YANG S K, CAI W P, KONG L C, LEI Y. Adv. Funct. Mater., 2010, 20(15):2527-2533.

    20. [20]

      YANG S K, LAPSLEY M I, CAO B Q, ZHAO C L, ZHAO Y H, HAO Q Z, KIRALY B, SCOTT J, LI W Z, WANG L, LEI Y, HUANG T J. Adv. Funct. Mater., 2013, 23(6):720-730.

    21. [21]

      LI LM, CHIN W S. ACS Appl. Mater. Interfaces, 2020, 12(33):37538-37548.

    22. [22]

      HASNA K, ANTONY A, PUIGDOLLERS J, KUMAR K R, JAYARAJ M K. Nano Res., 2016, 9(10):3075-3083.

    23. [23]

      CHEN R P, DU X, CUI Y J, ZHANG X Y, GE Q Y, DONG J, ZHAO X W. Small, 2020, 16(32):2002801.

    24. [24]

      SUI C F, WANG K G, WANG S, REN J Y, BAI X H, BAI J T. Nanoscale, 2016, 8(11):5920-5927.

    25. [25]

      SHAN D Z, HUANG L Q, LI X, ZHANG W W, WANG J, CHENG L, FENG X H, LIU Y, ZHU J P, ZHANG Y. J. Phys. Chem. C, 2014, 118(41):23930-23936.

    26. [26]

      JI N, RUAN W D, WANG C X, LU Z C, ZHAO B. Langmuir, 2009, 25(19):11869-11873.

    27. [27]

      CELIKM ALTUNTAS S, BUYUKSERIN F. Sens. Actuators, B, 2018, 255:2871-2877.

    28. [28]

      HONG D Y, KIM S K, KWON Y U. J. Phys. Chem. C, 2015, 119(39):22611-22617.

    29. [29]

      SU S, ZHANG C, YUWEN L H, CHAO J, ZUO X L, LIU X F, SONG C Y, FAN C H, WANG L H. ACS Appl. Mater. Interfaces, 2014, 6(21):18735-18741.

    30. [30]

      YU L L, LU L, ZENG L H, YAN X H, REN X F, WU J Z. J. Phys. Chem. C, 2021, 125(3):1940-1946.

    31. [31]

      QIU H W, WANG M Q, LI L, LI J J, YANG Z, CAO M H. Sens. Actuators, B, 2018, 255:1407-1414.

    32. [32]

      LI J F, TIAN X D, LI S B, ANEMA J R, YANG Z L, DING Y, WU Y F, ZENG Y M, CHEN Q Z, REN B, WANG Z L, TIAN Z Q. Nat. Protoc., 2013, 8(1):52-65.

    33. [33]

      WEI C, XU M M, FANG C W, JI N, YUAN Y X, YAO J L. Spectrochim. Acta, Part A, 2017, 175:262-268.

    34. [34]

      SAMAL A K, POLAVARAPU L, RODAL-CEDEIRA S, LIZ-MARZÀN L M, PÉREZ-JUSTE J, PASTORIZA-SANTOS I. Langmuir, 2013, 29(48):15076-15082.

    35. [35]

      CHANG J, ZHANG A M, HUANG Z C, CHEN Y S, ZHANG Q, CUI D X. Talanta, 2019, 198:45-54.

    36. [36]

      SHEN W, LIN X, JIANG C Y, LI C Y, LIN H X, HUANG J T, WANG S, LIU G K, YAN X M, ZHONG Q L, REN B. Angew. Chem., Int. Ed., 2015, 54(25):7308-7312.

    37. [37]

      LIU X J, CAO L Y, SONG W, AI K L, LU L H. ACS Appl. Mater. Interfaces, 2011, 3(8):2944-2952.

    38. [38]

      CAI Q R, MATETI S, WATANABE K, TANIGUCHI T, HUANG S M, CHEN Y, LI L H. ACS Appl. Mater. Interfaces, 2016, 8(24):15630-15636.

    39. [39]

      CHEN J M, GUO L H, CHEN L F, QIU B, HONG G L, LIN Z Y. ACS sensors, 2020, 5(12):3964-3970.

    40. [40]

      GUARROTXENA N, BAZAN G C. Chem. Commun., 2011, 47(31):8784-8786.

    41. [41]

      HUANG D D, CHEN J M, DING L, GUO L H, KANNAN P, LUO F, QIU B, LIN Z Y. Anal. Chim. Acta, 2020, 1110:56-63.

    42. [42]

      PANG Y F, WANG C W, WANG J, SUN Z W, XIAO R, WANG S Q. Biosens. Bioelectron., 2016, 79:574-580.

    43. [43]

      SUN F, ELLA-MENYE J R, GALVAN D D, BAI T, HUNG H C, CHOU Y N, ZHANG P, JIANG S Y, YU Q M. ACS Nano, 2015, 9(3):2668-2676.

    44. [44]

      JIA Y, SHMAKOV S N, PINKHASSIK E. ACS Appl. Mater. Interfaces, 2016, 8(30):19755-19763.

    45. [45]

      KIM Y H, KIM D J, LEE S, KIM D H, PARK S G, KIM S H. Small, 2019, 15(52):1905076.

    46. [46]

      KIM D J, PARK S G, KIM D H, KIM S H. Small, 2018, 14(40):1802520.

    47. [47]

      XIE Y F, CHEN T, GUO Y H, CHENG Y L, QIAN H, YAO W R. Food Chem., 2019, 270:173-180.

    48. [48]

      AI Y J, LIANG P, WU Y X, DONG Q M, LI J B, BAI Y, XU B J, YU Z, NI D J. Food Chem., 2018, 241:427-433.

    49. [49]

      CHEN J M, HUANG Y J, KANNAN P, ZHANG L, LIN Z Y, ZHANG J W, CHEN T, GUO L H. Anal. Chem., 2016, 88(4):2149-2155.

    50. [50]

      HE H R, SUN D W, PU H B, HUANG L J. Food Chem., 2020, 324:126832.

    51. [51]

      BAO L L, MAHURIN S M, HAIRE R G, DAI S. Anal. Chem., 2003, 75(23):6614-6620.

    52. [52]

      HE J, XU F J, CHEN Z, HOU X D, LIU Q, LONG Z. Chem. Commun., 2017, 53(80):11044-11047.

    53. [53]

      ZHANG C H, ZHU J, LI J J, ZHAO J W. ACS Appl. Mater. Interfaces, 2017, 9(20):17387-17398.

    54. [54]

      LI S J, ZHAO B F, AGUIRRE A, WANG Y, LI R X, YANG S S, ARAVIND I, CAI Z, CHEN R, JENSEN L, CRONIN S B. Anal. Chem., 2021, 93(16):6421-6427.

    55. [55]

      KIM S H, KIM D H, PARK S G. Analyst, 2018, 143(13):3006-3010.

    56. [56]

      GUERRINI L, KRPETIĆŽ, VAN LIEROP D, ALVAREZ-PUEBLA R A, GRAHAM D. Angew. Chem., Int. Ed., 2015, 127(4):1160-1164.

    57. [57]

      WANG C W, WANG C G, WANG X L, WANG K L, ZHU Y H, RONG Z, WANG W Y, XIAO R, WANG S Q. ACS Appl. Mater. Interfaces, 2019, 11(21):19495-19505.

    58. [58]

      ZHANG W S, WANG Y N, WANG Y, XU Z R. Sens. Actuators, B, 2019, 283:532-537.

    59. [59]

      YUE S, SUN X T, WANG Y, ZHANG W S, XU Z R. Sens. Actuators, B, 2018, 273:1539-1547.

    60. [60]

      PANIKAR S S, RAMÍREZ-GARCÍA G, SIDHIK S, LOPEZ-LUKE T, RODRIGUEZ-GONZALEZ C, CIAPARA I H, CASTILLO P S, CAMACHO-VILLEGAS T, DE LA ROSA E. Anal. Chem., 2018, 91(3):2100-2111.

    61. [61]

      HODGES M D, KELLY J G, BENTLEY A J, FOGARTY S, PATEL I I, MARTIN F L, FULLWOOD N J. ACS Nano, 2011, 5(12):9535-9541.

    62. [62]

      TAHIR M A, DINA N E, CHENG H Y, VALEV V K, ZHANG L W. Nanoscale, 2021, 13(27):11593-11634.

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

Metrics
  • PDF Downloads(39)
  • Abstract views(1121)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return