Citation: LIU Xue-Tao,  SUN Xi-Ru,  LIU Cheng-Hui,  WANG Yu-Cong. Colorimetric and Photothermal Dual-Mode Sensor for Detection of Histone[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1756-1764. doi: 10.19756/j.issn.0253-3820.210895 shu

Colorimetric and Photothermal Dual-Mode Sensor for Detection of Histone

  • Corresponding author: LIU Cheng-Hui,  WANG Yu-Cong, 
  • Received Date: 17 December 2021
    Revised Date: 20 February 2022

    Fund Project: Supported by the Innovation Capability Support Program of Shaanxi Province, China (No.2021TD-42) and the Program for the Fundamental Research Funds for the Central Universities of China (No.GK202101001).

  • Based on the peroxidase-like activity of metal-organic framework (Fe-MIL-88) and the competitive binding of histone and Fe-MIL-88 to double stranded DNA (dsDNA), a colorimetric and photothermal dual-mode sensor for detection of histone was developed by using oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) as the signal transducing probe. As a peroxidase-like nanozyme, Fe-MIL-88 could catalyze the reaction of hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine (TMB) to yield oxTMB. When Fe-MIL-88 and dsDNA mixed, Fe-MIL-88 could combine with dsDNA and its peroxidase activity was blocked, resulting in the reduction of oxTMB in the reaction solution. When histone, Fe-MIL-88 and dsDNA mixed, the competitive binding of histone and Fe-MIL-88 to dsDNA could reduce the amount of dsDNA on the surface of Fe-MIL-88 and cause the recovery of Fe-MIL-88's peroxidase activity, resulting in the increase of oxTMB in the reaction solution. The production of oxTMB increased with the increase of histone concentration. OxTMB was blue with maximum absorption at 650 nm while TMB was colorless. OxTMB could also induce the increase of solution temperature under 808 nm laser irradiation because of its photothermal effect. Therefore, the quantitative determination of histone was achieved indirectly by measuring the content of oxTMB through either spectrophotometry or thermometer. The histone had a linear relationship with the absorbance of the reaction solution in the concentration range of 0.01-20.00 μg/mL using the colorimetric sensor and the detection limit of histone was estimated to be 6.7 ng/mL. Simultaneously, the histone had a linear relationship with the temperature of the reaction solution in the concentration range of 0.05-30.00 μg/mL using the photothermal sensor and the detection limit of histone was estimated to be 36 ng/mL. In addition, the method had good specificity and could be applied to detection of histone in real samples. The method was less time-consuming and the detection of histone could be completed within 60 min. The results obtained by two different sensing modes could be mutually verified to ensure the accuracy of this method. Particularly, a simple thermometer was used as the signal reader instead of large and expensive equipments in the photothermal-sensing technique. Due to the unique features of thermometer such as low cost, portability, wide accessibility and simple operation, this proposed strategy showed great potential for the point-of-care testing of histone at home and in the field in the future.
  • 加载中
    1. [1]

      CLAPIER C R, CAIRNS B R. Annu. Rev. Biochem., 2009, 78(1):273-304.

    2. [2]

      KOUZARIDES T. Cell, 2007, 128(4):693-705.

    3. [3]

      MULLER M M, MUIR T W. Chem. Rev., 2015, 115(6):2296-2349.

    4. [4]

      COLPITTS T M, BARTHEL S, WANG P H, FIKRIG E. Plos One, 2011, 6(9):e24365.

    5. [5]

      SILK E, ZHAO H L, WENG H, MA D Q. Cell Death Dis., 2017, 8(5):e2812.

    6. [6]

      LV X, WEN T, SONG J, XIE D, WU L, JIANG X M, JIANG P, WEN Z M. Respir. Res., 2017, 18(1):165.

    7. [7]

      IMAI K, OCHIAI K. J. Oral Sci., 2011, 53(1):1-13.

    8. [8]

      PORTELA A, ESTELLER M. Nat. Biotechnol., 2010, 28(10):1057-1068.

    9. [9]

      BARSKI A, CUDDAPAH S, CUI K R, ROH T Y, SCHONES D E, WANG Z B, WEI G, CHEPELEV L, ZHAO K J. Cell, 2007, 129(4):823-837.

    10. [10]

      BUTLER J S, KOUTELOU E, SCHIBLER A C, DENT S Y. Epigenomics-UK, 2012, 4(2):163-177.

    11. [11]

      CAMPORS E I, REINBERG D. Annu. Rev. Genet., 2009, 43(1):559-599.

    12. [12]

      SANCHEZ O F, WILLIAMSON D, CAI L T, YUAN C L. Talanta, 2015, 140:212-218.

    13. [13]

      HARR J C, GONZALEZ-SANDOVAL A, GASSER S M. EMBO Rep., 2016, 17(2):139-155.

    14. [14]

      HAYASHIDA O, OGAWA N, UCHIYAMA M. J. Am. Chem. Soc., 2007, 129(44):13698-13705.

    15. [15]

      HE Y, CUI H. Biosens. Bioelectron., 2013, 47(15):313-317.

    16. [16]

      MAITI S, DAS K, DAS P. Chem. Commun., 2013, 49(78):8851-8853.

    17. [17]

      WANG J, ONOSHIMA D, AKI M, OKAMOTO Y, KAJI N, TOKESHI M, BABA Y. Anal. Chem., 2011, 83(9):3528-3532.

    18. [18]

      LU X Z, JIA H X, YAN X H, WANG J S, WANG Y C, LIU C H. Talanta, 2018, 180:150-155.

    19. [19]

    20. [20]

      LIU X F, ZOU L Y, YANG X H, WANG Q, ZHENG Y, GENG X H, LIAO G F, NIE W Y, WANG K M. Anal. Chem., 2019, 91(12):7943-7949.

    21. [21]

      ZHOU W, HU K Q, KWEE S, TANG L, WANG Z H, XIA J F, LI X J. Anal. Chem., 2020, 92(3):2739-2747.

    22. [22]

      LIU Y H, PAN M, WANG W X, JIANG Q Y, WANG F, PANG D W, LIU X Q. Anal. Chem., 2019, 91(3):2086-2092.

    23. [23]

      GUO L, ZHANG Y J, YU Y L, WANG J H. Anal. Chem., 2020, 92(21):14806-14813.

    24. [24]

      ZHANG J J, XING H, LU Y. Chem. Sci. 2018, 9(16):3906-3910.

    25. [25]

      LU K D, AUNG T, GUO N N, WEICHSELBAUM R, LIN W B. Adv. Mater., 2018, 30(37):1707634.

    26. [26]

      LUAN Q, XIONG X, GAN N, CAO Y T, LI T H, WU D Z, DONG Y R, HU F T. Talanta, 2018, 187:27-34.

    27. [27]

    28. [28]

      WANG C H, GAO J, CAO Y L, TAN H L. Anal. Chim. Acta, 2018, 1004:74-81.

    29. [29]

      FU G L, SANJAY S T, ZHOU W, BREKKEN R A, KIRKEN R A, LI X J. Anal. Chem., 2018, 90(9):5930-5937.

    30. [30]

      AN P L, XUE X, RAO H H, WANG J J, GAO M, WANG H Q, LUO M Y, LIU X H, XUE Z H, LU X Q. Anal. Chim. Acta, 2020, 1125:114-127.

    31. [31]

      LIU Y L, FU W L, LI C M, HUANG C Z, LI Y F. Anal. Chem. Acta, 2015, 861:55-61.

    32. [32]

      ZHAO D, WAN X Y, SONG H J, HAO L Y, SU Y Y, LV Y. Sens. Actuators, B, 2014, 197:50-57.

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    16. [16]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(15)
  • Abstract views(890)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return