Citation: YU Jian-Fang,  SI Shi-Hui,  ZHOU Zhuo,  WANG Zhen-Chang,  CHEN Jin-Hua. Detection of Myoglobin by High Frequency Piezoelectric Quartz Aptamer Biosensor Based on Molecular Bond Rupture Technology[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1065-1071. doi: 10.19756/j.issn.0253-3820.210881 shu

Detection of Myoglobin by High Frequency Piezoelectric Quartz Aptamer Biosensor Based on Molecular Bond Rupture Technology

  • Corresponding author: SI Shi-Hui, sishihui@163.com
  • Received Date: 7 December 2021
    Revised Date: 15 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (No.2172810).

  • A biosensor for detection of myoglobin based on the technology of molecular bond rupture of piezoelectric quartz crystal excited by amplitude modulation resonant and the method of double aptamer sandwich were developed. The aptamer Ⅰ was coated onto the gold electrode surface of quartz crystal microbalance (QCM) through Au-S bond, and specifically bound to myoglobin, which coupled with aptamer Ⅱ-magnetic beads to enhance the mass response. When the peak-to-peak value of the excitation voltage was increased to 8 V at the resonant frequency for 50 MHz gold-plated quartz crystal, the layer of aptamer Ⅱ-magnetic beads bonded to the surface would be removed, resulting in the occurrence of molecular bond rupture process and the increase of the resonant frequency, and the QCM aptamer biosensor with high specificity for detection of myoglobin was developed. Under the optimized conditions, the linear range of detection of myoglobin was 1.0-500 ng/mL, and the detection limit (3σ) was 0.38 ng/mL. The recoveries of myoglobin in human serum sample ranged from 96.4% to 104.0%. Compared to traditional QCM sensing technology, the sensing method established here was simple, fast, and easy to operate. Besides, the aptamer biosensor based on molecular bond rupture technology had practical and market application value.
  • 加载中
    1. [1]

      JANDAS P J, PRABAKARAN K, LUO J T. Sens. Actuators, A, 2021, 331:113020.

    2. [2]

      LIN J Y, LEE S S. Anal. Methods, 2020, 12(42):5103-5109.

    3. [3]

      DULTSEV F N, OSTANIN V P, KLENERMAN D. Langmuir, 2000, 16(11):5036-5040.

    4. [4]

      COOPER M A, DULTSEV F N, MINSON T. Nat. Biotechnol., 2001, 19(9):833-837.

    5. [5]

      KURUS N N, DULTSEV F N. ACS Omega, 2018, 3(3):2793-2797.

    6. [6]

      KURUS N N, DULTSEV F N, GOLYSHEV V M. Anal. Methods, 2020, 12(30):3771-3777.

    7. [7]

      KURUS N N, DULTSEV F N. J. Struct. Chem., 2017, 58(2):315-339.

    8. [8]

      KHOBRAGDE S, GRANJA C D S, SANDSTROM N. Sens. Actuators, B, 2020, 316:128086.

    9. [9]

      LIU X F, ZHANG H, QIN S Y, WANG Q, YANG X H, WANG K M. Biosens. Bioelectron., 2019, 129:87-92.

    10. [10]

    11. [11]

      WANG Q, LIU W, XING Y Q, YANG X H, WANG K M, JIANG R, WANG P, ZHAO Q. Anal. Chem., 2014, 86(13):6572-6579.

    12. [12]

      KUMAR V, SHORIE M, GANGULA K, SABHERWAL P. Biosens. Bioelectron., 2015, 72:56-60.

    13. [13]

    14. [14]

      AKTER R, RHEE C K, RAHMAN M A. Biosens. Bioelectron., 2015, 66:539-546.

    15. [15]

      PAN Y H, GUO M L, NIE Z, HUANG Y, PAN C F, ZENG K, ZHANG Y, YAO S Z. Biosens. Bioelectron., 2010, 25(7):1609-1614.

    16. [16]

      TANG W, MI R, WANG L, CHEN H. Sens. Actuators, B, 2021, 340:129969.

    17. [17]

      YANG L Z, LIU H Y, HU N F. Electrochem. Commun., 2007, 9(5):1057-1061.

    18. [18]

      MECEA V M. Anal. Lett., 2005, 38(5):753-767.

    19. [19]

      TAGHDISI S M, DANESH N M, RAMERZANI M, EMRANI A S, ABNOUS K. Biosens. Bioelectron., 2016, 80:532-537.

    20. [20]

      GUTTENBERG Z, BAUSCH A R, HU B, BRUINSMA R, MORODER L, SACKMANN E. Langmuir, 2000, 16(23):8984-8993.

    21. [21]

      EL-SAID W A, FOUAD D M, EL-SAFTY S A. Sens. Actuators, B, 2016, 228:401-409.

    22. [22]

      DARAIN F, YAGER P, GAN K L, TJIN S C. Biosens. Bioelectron., 2009, 24(6):1744-1750.

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    3. [3]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    4. [4]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

Metrics
  • PDF Downloads(4)
  • Abstract views(558)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return