Citation:
CUI Ya-Nan, SUN Qi, REN Xiao-Yan, LU Le-Hui. Performance Analysis of Binders for Silicon Anodes by In-situ Electrochemical Quartz Crystal Microbalance Technique[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 384-391.
doi:
10.19756/j.issn.0253-3820.210874
-
Binders play an important role in the commercialization of silicon anodes. Herein, two kinds of commonly used commercial binders, polyvinylidene difluoride (PVDF) and sodium alginate (ALG), were characterized with cyclic charge-discharge test, cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The results showed that silicon electrode using binder ALG endowed enhanced cycling stability (200 cycles at 0.1 C) and low-capacity fading rate (0.2% per cycle). In comparison with silicon electrode using binder PVDF, the surface of silicon electrode using ALG was much smoother and exhibited lower impedance after cycling. Furthermore, in-situ electrochemical quartz crystal microbalance (In-situ EQCM) was then introduced to quantitatively record the quality and current changes of electrode in real time, and the generation process of solid electrolyte interface (SEI) film was further analyzed. The analysis results showed that the hydrogen bond interaction between the carboxyl group of binder ALG and the hydroxyl group on silicon electrode could enhance the adhesion of nano-silicon particles to the current collector, promote the formation of a thin and dense SEI film on the electrode surface, reduce the decomposition of electrolyte, and significantly improve the electrochemical performance. In this study, a combination of in-situ and ex-situ characterization was used to make a preliminary discussion on the mechanism of different binders during the charge and discharge process of silicon electrodes.
-
-
-
[1]
OBROVAC M N, CHEVRIER V L. Chem. Rev., 2014, 114(23):11444-11502.
-
[2]
TRIPATHI A M, SU W N, HWANG B J. Chem. Soc. Rev., 2018, 47(3):736-851.
-
[3]
-
[4]
-
[5]
JI Y C, YIN Z W, YANG Z Z, DENG Y P, CHEN H B, LIN C, YANG L Y, YANG K, ZHANG M J, XIAO Q F, LI J T, CHEN Z W, SUN S G, PAN F. Chem. Soc. Rev., 2021, 50(19):10743-10763.
-
[6]
ZHU G J, CHAO D L, XU W L, WU M H, ZHANG H J. ACS Nano, 2021, 15(10):15567-15593.
-
[7]
WU F X, MAIER J, YU Y. Chem. Soc. Rev., 2020, 49(5):1569-1614.
-
[8]
-
[9]
CHAN C K, PATEL R N, O'CONNELL M J. ACS Nano, 2010, 4(3):1443-1450.
-
[10]
LIU N, LU Z, ZHAO J, MCDOWELL M T, LEE H W, ZHAO W, CUI Y. Nat. Nanotechnol, 2014, 9(3):187-192.
-
[11]
CHAN C K, PENG H, LIU G, MCILWRATH K, ZHANGX F, HUGGINS R A. Nat. Nanotechnol., 2007, 3(1):31-35.
-
[12]
MAGASINSKI A, ZDYRKO B, KOVALENKO I, HERTZBERG B, BURTOVYY R, HUEBNER C F, FULLER T F, LUZINOV I, YUSHIN G. ACS Appl. Mater. Interfaces, 2010, 2(11):3004-3010.
-
[13]
CHOI S, KWON T W, COSKUN A, CHOI J W. Science, 2017, 357(6348):279-283.
-
[14]
RYOU M H, KIM J, LEE I, KIM S, JEONG Y K, HONG S, RYU J H, KIM T S, PARK J K, LEE H, CHOI J W. Adv. Mater., 2013, 25(11):1571-1576.
-
[15]
RUFFO R, HONG S S, CHAN C K. J. Phys. Chem. C, 2009, 113(26):11390-11398.
-
[16]
CHANG J B, HUANG X K, ZHOU G H, CUI S M, HALLAC P B, JIANG J W, HURLEY P T, CHEN J H. Adv. Mater., 2014, 26(5):758-764.
-
[17]
CHEN H, LING M, HENCZ L, LING H Y, LI G R, LIN Z, LIU G, ZHANG S Q. Chem. Rev., 2018, 118(18):8936-8982.
-
[18]
SONG J X, ZHOU M J, YI R, XU T, GORDIN M L, TANG D H, YU Z X, REGULA M, WANG D H. Adv. Funct. Mater., 2014, 24(37):5904-5910.
-
[19]
-
[20]
PARK C M, KIM J H, KIM H, SOHN H J. Chem. Soc. Rev., 2010, 39(8):3115-3141.
-
[21]
JIAO X X, YIN J Q, XU X Y, WANG J L, LIU Y Y, XIONG S Z, ZHANG Q L, SONG J X. Adv. Funct. Mater., 2021, 31(3):2005699.
-
[22]
LIU D, ZHAO Y, TAN R, TIAN L L, LIU Y, PAN F. Nano Energy, 2017, 36:206-212.
-
[23]
WANG C, WU H, CHEN Z, MCDOWELL M T, CUI Y, BAO Z A. Nat. Chem., 2013, 5(12):1042-1048.
-
[24]
LIU T C, LIN L P, BI X X, TIAN L L, XU K, PAN F. Nat. Nanotechnol., 2019, 14:50-56.
-
[25]
WANG J, HU Y, ZHAO H, FU H X, PENG K Q. Adv. Mater. Interfaces, 2018, 5(23):1801132.
-
[26]
KOVALENKO I, ZDYRKO B, MAGASINSKI A, HERTZBERG B, MILICEV Z, BURTOVYY R, LUZINOV I, YUSHIN G. Science, 2011, 334(6052):75-79.
-
[27]
MA X, GAO Y, CHEN M, WU L M. ChemElectroChem, 2017, 4(6):1463-1469.
-
[28]
LIU W, LIU P, MITLIN D. Adv. Energy Mater., 2020, 10(43):2002297.
-
[29]
ZHAO Q, STALIN S, ARCHER L A. Joule, 2021, 5(5):1119-1142.
-
[30]
WU H, CHAN G, CHOI J W, YANG Y, HU L. Nat. Nanotechnol., 2012, 7(5):310-315.
-
[31]
LUO W, CHEN X Q, XIA Y, LI W, YANG J P. Adv. Energy Mater., 2017, 7(24):1701083.
-
[1]
-
-
-
[1]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[2]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[3]
Min LIU , Huapeng RUAN , Zhongtao FENG , Xue DONG , Haiyan CUI , Xinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362
-
[4]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[5]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[6]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[7]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[8]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[9]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[10]
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
-
[11]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[12]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[14]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[15]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[16]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[17]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[18]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[19]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[20]
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
-
[1]
Metrics
- PDF Downloads(15)
- Abstract views(1045)
- HTML views(271)