Citation: CHENG Xiao-Wei,  LI Shan-Shan,  WU Lie,  JIANG Xiu-E. Study on Counter Ion Effect at Electrode/Electrolyte Interface by Surface-enhanced Infrared Absorption Spectroelectrochemistry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 365-374. doi: 10.19756/j.issn.0253-3820.210873 shu

Study on Counter Ion Effect at Electrode/Electrolyte Interface by Surface-enhanced Infrared Absorption Spectroelectrochemistry

  • Corresponding author: WU Lie,  JIANG Xiu-E, 
  • Received Date: 1 December 2021
    Revised Date: 23 December 2021

    Fund Project: Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2020233), the National Natural Science Foundation of China (Nos.22025406, 22074138) and the Science and Technology Innovation Foundation of Jilin Province, China (No.20200703021ZP).

  • The electrode-electrolyte interface is very important in electrochemistry, but the quantitative analysis of the adsorption of counter ions on the electrode surface and its influence on the interfacial electric field is extremely lacking, which limits the in-depth understanding of the electrode-electrolyte interface. In this study, four commonly used electrolytes in neutral electrochemical reaction systems were selected, and surface-enhanced infrared absorption spectroelectrochemistry combined with the vibrational Stark effect was used to analyze the special counter-ion effect at the electrode-electrolyte interface. The difference in distributions of anions as counter ions in the electric double layer due to the difference in the strength of the interaction with the electrode surface and the resultant different shielding of the local electric field at the interface were revealed through vibrational Stark probe with different molecular length. Anions that specifically interacted with the electrode could be adsorbed in the Stern layer in large quantities, significantly reducing the local effective electric field. This had far-reaching significance for deep understanding of the electrochemical double layer structure and the structure-activity relationship of the electrocatalytic reaction. At the same time, an effective quantitative analysis method was proposed for analysis of electrode-electrolyte interface.
  • 加载中
    1. [1]

      DEVANATHAN M A, TILAK B V K. Chem. Rev., 1965, 65(6):635-684.

    2. [2]

      MAGNUSSEN O M, GROß A. J. Am. Chem. Soc., 2019, 141(12):4777-4790.

    3. [3]

      STEINMANN S N, WEI Z Y, SAUTET P. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(16):7611-7613.

    4. [4]

      ZAERA F. Chem. Rev., 2012, 112(5):2920-2986.

    5. [5]

      CHOI N S, CHEN Z H, FREUNBERGER S A, JI X L, SUN Y K, AMINE K, YUSHIN G, NAZAR L F, CHO J, BRUCE P G. Angew. Chem., Int. Ed., 2012, 51(40):9994-10024.

    6. [6]

      TRIPKOVIC D V, STRMCNIK D, VAN DER VLIET D, STAMENKOVIC V, MARKOVIC N M. Faraday Discuss., 2008, 140:25-40.

    7. [7]

      WANG H N, PILON L. J. Phys. Chem. C, 2011, 115(33):16711-16719.

    8. [8]

      POPE J M, ZHENG T, KIMBRELL S, BUTTRY D A. J. Am. Chem. Soc., 1992, 114(25):10085-10086.

    9. [9]

      EGGERS P K, DARWISH N, PADDON-ROW M N, GOODING J J. J. Am. Chem. Soc., 2012, 134(17):7539-7544.

    10. [10]

      SMITH C P, WHITE H S. Anal. Chem., 1992, 64(20):2398-2405.

    11. [11]

      WEN B Y, LIN J S, ZHANG Y J, RADJENOVIC P M, ZHANG X G, TIAN Z Q, LI J F. J. Am. Chem. Soc., 2020, 142(27):11698-11702.

    12. [12]

      FAVARO M, JEONG B, ROSS P N, YANO J, HUSSAIN Z, LIU Z, CRUMLIN E J. Nat. Commun., 2016, 7:12695.

    13. [13]

      BROWN M A, GOEL A, ABBAS Z. Angew. Chem., Int. Ed., 2016, 55(11):3790-3794.

    14. [14]

      WANG X P, LIU K, WU J Z. J. Chem. Phys., 2021, 154(12):124701.

    15. [15]

    16. [16]

      ZHANG P, WEI Y, CAI J, CHEN Y X, TIAN Z Q. Chin. J. Catal., 2016, 37(7):1156-1165.

    17. [17]

      SCHKOLNIK G, SALEWSKI J, MILLO D, ZEBGER I, FRANZEN S, HILDEBRANDT P. Int. J. Mol. Sci., 2012, 13(6):7466-7482.

    18. [18]

      ZHANG N, WANG X R, YUAN Y X, WANG H F, XU M M, REN Z G, YAO J L, GU R A. J. Electroanal. Chem., 2015, 751:137-143.

    19. [19]

      DREXLER C I, CRACCHIOLO O M, MYERS R L, OKUR H I, SERRANO A L, CORCELLI S A, CREMER P. J. Phys. Chem. B, 2021, 125(30):8484-8493.

    20. [20]

      SARKAR S, MAITRA A, BANERJEE S, THOI V S, DAWLATY J M. J. Phys. Chem. B, 2020, 124(7):1311-1321.

    21. [21]

      WU L, ZENG L, JIANG X E. J. Am. Chem. Soc., 2015, 137(32):10052-10055.

    22. [22]

      LI X, GEWIRTH A A. J. Am. Chem. Soc., 2003, 125(38):11674-11683.

    23. [23]

      LEVINSON N M, BOLTE E E, MILLER C S, CORCELLI S A, BOXER S G. J. Am. Chem. Soc., 2011,133(34):13236-13239.

    24. [24]

      MAGNUSSEN O M. Chem. Rev., 2002, 102(3):679-726.

    25. [25]

      YAGUCHI M, UCHIDA T, MOTOBAYASHI K, OSAWA M. J. Phys. Chem. Lett., 2016, 7(16):3097-3102.

    26. [26]

      ZHANG Y Y, TANG J L, NI Z G, ZHAO Y, JIA F F, LUO Q, MAO L Q, ZHU Z H, WANG F Y. J. Phys. Chem. Lett., 2021, 12(22):5279-5285.

    27. [27]

      HU Q Y, WEBER C, CHENG H W, RENNER F U, VALTINER M. J. ChemPhysChem, 2017, 18(21):3056-3065.

  • 加载中
    1. [1]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    5. [5]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    15. [15]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    16. [16]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(16)
  • Abstract views(1021)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return