Citation:
CHENG Xiao-Wei, LI Shan-Shan, WU Lie, JIANG Xiu-E. Study on Counter Ion Effect at Electrode/Electrolyte Interface by Surface-enhanced Infrared Absorption Spectroelectrochemistry[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 365-374.
doi:
10.19756/j.issn.0253-3820.210873
-
The electrode-electrolyte interface is very important in electrochemistry, but the quantitative analysis of the adsorption of counter ions on the electrode surface and its influence on the interfacial electric field is extremely lacking, which limits the in-depth understanding of the electrode-electrolyte interface. In this study, four commonly used electrolytes in neutral electrochemical reaction systems were selected, and surface-enhanced infrared absorption spectroelectrochemistry combined with the vibrational Stark effect was used to analyze the special counter-ion effect at the electrode-electrolyte interface. The difference in distributions of anions as counter ions in the electric double layer due to the difference in the strength of the interaction with the electrode surface and the resultant different shielding of the local electric field at the interface were revealed through vibrational Stark probe with different molecular length. Anions that specifically interacted with the electrode could be adsorbed in the Stern layer in large quantities, significantly reducing the local effective electric field. This had far-reaching significance for deep understanding of the electrochemical double layer structure and the structure-activity relationship of the electrocatalytic reaction. At the same time, an effective quantitative analysis method was proposed for analysis of electrode-electrolyte interface.
-
-
-
[1]
DEVANATHAN M A, TILAK B V K. Chem. Rev., 1965, 65(6):635-684.
-
[2]
MAGNUSSEN O M, GROß A. J. Am. Chem. Soc., 2019, 141(12):4777-4790.
-
[3]
STEINMANN S N, WEI Z Y, SAUTET P. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(16):7611-7613.
-
[4]
ZAERA F. Chem. Rev., 2012, 112(5):2920-2986.
-
[5]
CHOI N S, CHEN Z H, FREUNBERGER S A, JI X L, SUN Y K, AMINE K, YUSHIN G, NAZAR L F, CHO J, BRUCE P G. Angew. Chem., Int. Ed., 2012, 51(40):9994-10024.
-
[6]
TRIPKOVIC D V, STRMCNIK D, VAN DER VLIET D, STAMENKOVIC V, MARKOVIC N M. Faraday Discuss., 2008, 140:25-40.
-
[7]
WANG H N, PILON L. J. Phys. Chem. C, 2011, 115(33):16711-16719.
-
[8]
POPE J M, ZHENG T, KIMBRELL S, BUTTRY D A. J. Am. Chem. Soc., 1992, 114(25):10085-10086.
-
[9]
EGGERS P K, DARWISH N, PADDON-ROW M N, GOODING J J. J. Am. Chem. Soc., 2012, 134(17):7539-7544.
-
[10]
SMITH C P, WHITE H S. Anal. Chem., 1992, 64(20):2398-2405.
-
[11]
WEN B Y, LIN J S, ZHANG Y J, RADJENOVIC P M, ZHANG X G, TIAN Z Q, LI J F. J. Am. Chem. Soc., 2020, 142(27):11698-11702.
-
[12]
FAVARO M, JEONG B, ROSS P N, YANO J, HUSSAIN Z, LIU Z, CRUMLIN E J. Nat. Commun., 2016, 7:12695.
-
[13]
BROWN M A, GOEL A, ABBAS Z. Angew. Chem., Int. Ed., 2016, 55(11):3790-3794.
-
[14]
WANG X P, LIU K, WU J Z. J. Chem. Phys., 2021, 154(12):124701.
-
[15]
-
[16]
ZHANG P, WEI Y, CAI J, CHEN Y X, TIAN Z Q. Chin. J. Catal., 2016, 37(7):1156-1165.
-
[17]
SCHKOLNIK G, SALEWSKI J, MILLO D, ZEBGER I, FRANZEN S, HILDEBRANDT P. Int. J. Mol. Sci., 2012, 13(6):7466-7482.
-
[18]
ZHANG N, WANG X R, YUAN Y X, WANG H F, XU M M, REN Z G, YAO J L, GU R A. J. Electroanal. Chem., 2015, 751:137-143.
-
[19]
DREXLER C I, CRACCHIOLO O M, MYERS R L, OKUR H I, SERRANO A L, CORCELLI S A, CREMER P. J. Phys. Chem. B, 2021, 125(30):8484-8493.
-
[20]
SARKAR S, MAITRA A, BANERJEE S, THOI V S, DAWLATY J M. J. Phys. Chem. B, 2020, 124(7):1311-1321.
-
[21]
WU L, ZENG L, JIANG X E. J. Am. Chem. Soc., 2015, 137(32):10052-10055.
-
[22]
LI X, GEWIRTH A A. J. Am. Chem. Soc., 2003, 125(38):11674-11683.
-
[23]
LEVINSON N M, BOLTE E E, MILLER C S, CORCELLI S A, BOXER S G. J. Am. Chem. Soc., 2011,133(34):13236-13239.
-
[24]
MAGNUSSEN O M. Chem. Rev., 2002, 102(3):679-726.
-
[25]
YAGUCHI M, UCHIDA T, MOTOBAYASHI K, OSAWA M. J. Phys. Chem. Lett., 2016, 7(16):3097-3102.
-
[26]
ZHANG Y Y, TANG J L, NI Z G, ZHAO Y, JIA F F, LUO Q, MAO L Q, ZHU Z H, WANG F Y. J. Phys. Chem. Lett., 2021, 12(22):5279-5285.
-
[27]
HU Q Y, WEBER C, CHENG H W, RENNER F U, VALTINER M. J. ChemPhysChem, 2017, 18(21):3056-3065.
-
[1]
-
-
-
[1]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[2]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[3]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[4]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[5]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[6]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[7]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[8]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[9]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[10]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[11]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[12]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[13]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[14]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[15]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[16]
Ying Zhang , Fang Ge , Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104
-
[17]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[18]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[19]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[20]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[1]
Metrics
- PDF Downloads(16)
- Abstract views(1021)
- HTML views(245)