Citation: ZHANG Qiang,  SHI Qiu-Na,  LI Lei,  LI Li-Jie,  SU Yue,  GUO Yin-Long. Development of Thin-layer Chromatography Carbon Fiber Ionization Mass Spectrometry and Its Application in Analysis of Traditional Chinese Medicine[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1345-1354. doi: 10.19756/j.issn.0253-3820.210868 shu

Development of Thin-layer Chromatography Carbon Fiber Ionization Mass Spectrometry and Its Application in Analysis of Traditional Chinese Medicine

  • Corresponding author: SHI Qiu-Na,  GUO Yin-Long, 
  • Received Date: 29 November 2021
    Revised Date: 8 March 2022

    Fund Project: Supported by the Humanity and Social Science Youth Foundation of Ministry of Education of China (No.20YJC820062), the Henan Province Science and Technology Research Project (No.222102310354), the Key Scientific Research Projects of Higher Education Institutions in Henan Province (Nos.22B150003, 22B150004), the Humanities and Social Sciences Research Project of Henan Provincial Department of Education (No.2021-ZDJH-0113), the College-level Scientific Research Project of Henan Police College (No.HNJY-2021-45) and the Teaching Reform Research and Practice Project of Henan Police College (No.JY2021021).

  • To realize simple, rapid, in-situ, non-destructive analysis and identification of compounds on thin-layer chromatography, a combined technology of thin-layer chromatography with carbon fiber ionization mass spectrometry (TLC-CFI-MS) was developed, and the application of this technique in the field of Chinese medicine analysis was studied. First, to meet the needs of different types of samples or different analysis scenarios, two analysis modes of solvent-assisted TLC-CFI-MS and heat-assisted TLC-CFI-MS were designed. Then, the application of the above two analysis methods in analysis of traditional Chinese medicine was studied, and the analytical performance of the two analytical methods was examined. The limit of detection (LOD) of coumarin by solvent-assisted TLC-CFI-MS was 8 μg/mL, and the limit of quantification (LOQ) was 30 μg/mL; LOD and LOQ of heat-assisted TLC-CFI-MS were 20 ng/mL and 50 ng/mL, respectively. The heat-assisted TLC-CFI-MS demonstrated the quantitative analysis capability for coumarin in the concentration range of 0.01-1 mg/mL (R2=0.997). In addition, the application of solvent-assisted TLC-CFI-MS and heat-assisted TLC-CFI-MS in the analysis of traditional Chinese medicines was preliminarily explored. Both methods achieved rapid in-situ identification of compounds on chromatographic plates after TLC analysis of Cinnamomum cassia and Ligusticum chuanxiong. For example, coumarin and cinnamic aldehyde from Cinnamomum cassia and ligustilide, snidium lactone and ligustride A from Ligusticum chuanxiong were all identified. In addition, the coumarin content in a cinnamon sample was determined to be 1.04 mg/g by heat-assisted TLC-CFI-MS. The results suggested that TLC-CFI-MS had certain application potential in the rapid analysis of traditional Chinese medicine compounds. It would also show certain application value in the analysis of traditional Chinese medicine components, as well as quality control and evaluation.
  • 加载中
    1. [1]

      CHENG S C, HUANG M Z, SHIEA J T. J. Chromatogr. A, 2011, 1218(19):2700-2711.

    2. [2]

      YE Z, DAI J R, ZHANG C G, LU Y, WU L L, GONG A G W, XU H, TSIM K W K, WANG Z T. Evidence-Based Complementary Altern. Med., 2017, 2017:8647212.

    3. [3]

      WONG K H, RAZMOVSKI-NAUMOVSKI V, LI K M, LI G Q, CHAN K. J. Pharm. Biomed. Anal., 2014, 95:11-19.

    4. [4]

      HE F Y, HE Y, ZHENG X W, WANG R Z, LU J, DAI Z, MA S C. J. AOAC Int., 2018, 101(3):686-694.

    5. [5]

      BLATTER A, REICH E. J. Planar Chromatogr.-Mod. TLC, 2004, 17(5):355-359.

    6. [6]

      MARTELANC M, VOVK I, SIMONOVSKA B. J.Chromatogr. A, 2009, 1216(38):6662-6670.

    7. [7]

      COOKS R G, OUYANG Z, TAKATS Z, WISEMAN J M. Science, 2006, 311(5767):1566-1570.

    8. [8]

    9. [9]

    10. [10]

      HUANG M Z, CHENG S C, CHO Y T, SHIEA J T. Anal. Chim. Acta, 2011, 702(1):1-15.

    11. [11]

      ALBERICI R M, SIMAS R C, SANVIDO G B, ROM O W, LALLI P M, BENASSI M, CUNHA I B S, EBERLIN M N. Anal. Bioanal. Chem., 2010, 398(1):265-294.

    12. [12]

    13. [13]

    14. [14]

    15. [15]

      YANG Y Y, DENG J W. TrAC, Trends Anal. Chem., 2016, 82:68-88.

    16. [16]

    17. [17]

      CHEN Y L, LI L N, XIONG F, XIE Y Q, XIONG A Z, WANG Z T, YANG L. Food Chem., 2021, 334:127472.

    18. [18]

    19. [19]

      HARRY E L, REYNOLDS J C, BRISTOW A W T, WILSON I D, CREASER C S. Rapid Commun. Mass Spectrom., 2009, 23(17):2597-2604.

    20. [20]

      DEVENPORT N A, REYNOLDS J C, WESTON D J, WILSON I D, CREASER C S. Analyst, 2012, 137(15):3510-3513.

    21. [21]

      CEGŁOWSKI M, SMOLUCH M, RESZKE E, SILBERRING J, SCHROEDER G. Anal. Bioanal. Chem., 2016, 408(3):815-823.

    22. [22]

      MORLOCK G, SCHWACK W. TrAC, Trends Anal. Chem., 2010, 29(10):1157-1171.

    23. [23]

      MORLOCK G, UEDA Y. J. Chromatogr. A, 2007, 1143(1):243-251.

    24. [24]

      GONG X X, ZHANG D, EMBILE I B, SHE Y, SHI S Y, GAMEZ G. J. Am. Soc. Mass Spectrom., 2020, 31(9):1981-1993.

    25. [25]

      SAJEWICZ M, STASZEK D, NATIC M, KOWALSKA T, WAKSMUNDZKAHAJNOS M. J. Chromatogr. Sci., 2011, 49(7):560-567.

    26. [26]

      CORAN S A, MULAS S, VASCONI A. J. Chromatogr. A, 2014, 1325:221-226.

    27. [27]

      ZHANG L, SHI J Y, TANG J H, CHENG Z H, LU X H, KONG Y, WU T. Anal. Chim. Acta, 2017, 967:52-58.

    28. [28]

      KIM H J, OH M S, HONG J, JANG Y P. Phytochem. Anal., 2011, 22(3):258-262.

    29. [29]

      WU M X, WANG H Y, ZHANG J T, GUO Y L. Anal. Chem., 2016, 88(19):9547-9553.

    30. [30]

      WU M L, CHEN T Y, CHEN Y C, CHEN Y C. Anal. Chem., 2017, 89(24):13458-13465.

    31. [31]

    32. [32]

      ZHANG Q, LIU X P, LI Z Q, SU Y, GUO Y L. Anal. Chim. Acta, 2019, 1048:115-122.

    33. [33]

      WANG Z Y, CAO Y Q, LU Y J, ZHANG F, SU Y, GUO Y L. Anal. Chim. Acta, 2020, 1136:62-71.

    34. [34]

    35. [35]

    36. [36]

      HE Z D, QIAO C F, HAN Q B, SONG J Z, CHENG C L, XU H X, JIANG R W, WONG K L, BUT P P, SHAW P C. J. Chin. Pharmaceut. Sci., 2006, 15(4):195-199.

    37. [37]

    38. [38]

      KRÜGER S, WINHEIM L, MORLOCK G E. Food Chem., 2018, 239:1182-1191.

    39. [39]

      MEHER A K, CHEN Y C. Anal. Chim. Acta, 2017, 966:41-46.

    40. [40]

      YI T, FANG J Y, ZHU L, TANG Y N, JI H, ZHANG Y Z, YU J C, ZHANG X J, YU Z L, ZHAO Z Z, CHEN H B. Chin. Med., 2016, 11:26.

    41. [41]

  • 加载中
    1. [1]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    2. [2]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    3. [3]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    6. [6]

      Kejie Li Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080

    7. [7]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(5)
  • Abstract views(211)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return