Citation: YE Jing-Hong,  WU Qing-Chuan,  ZONG Zhi-Qiang,  ZHANG Xiao-Jiang,  CAI Dong-Qing,  WANG Dong-Fang. Progress in Removal of Heavy Metal Ions by Electrochemical Method[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 830-838. doi: 10.19756/j.issn.0253-3820.210852 shu

Progress in Removal of Heavy Metal Ions by Electrochemical Method

  • Corresponding author: WANG Dong-Fang, dfwang@dhu.edu.cn
  • Received Date: 30 December 2021
    Revised Date: 27 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China(No. 52000025), the Key Research and Development Program of Guangdong Province, China(No. 2020B0202010005), the Key Research and Development Program of Inner Mongolia Autonomous Region, China(No. 2021GG0300) and the Key Research and Development Program of Ningxia Hui Autonomous Region, China(No. 2018BBF02021).

  • Heavy metal ions(HMIs) are toxic and non-degradable, possessing a serious threat to the ecological environment, biodiversity and human health. Electrochemical method is an effective method for treating HMIs wastewater, and electrode materials are the critical components in the removal of HMIs. This work reviewed the mechanism of HMIs in the process of electrochemistry, such as electrosorption, electro-oxidation, electro-reduction, and electrodeposition. In addition, the effect of electrode materials on the removal of HMIs was also discussed, including removal efficiency, removal mechanism and current efficiency. At last, the development trends of electrochemical methods and electrode materials were prospected according to the advantages and bottlenecks of HMIs removal.
  • 加载中
    1. [1]

      KIM Y, LIN Z, JEON I, VAN VOORHIS T, SWAGER T M. J. Am. Chem. Soc., 2018, 140(43):14413-14420.

    2. [2]

      NADERI A, DELAVAR M A, GHORBANI Y, KABOUDIN B, HOSSEINI M. Appl. Clay Sci., 2018, 158:236-245.

    3. [3]

      BEHBAHANI E S, DASHTIAN K, GHAEDI M. J. Hazard. Mater., 2021, 410:124560.

    4. [4]

      ZHENG J, XIA L, SONG S. RSC Adv., 2017, 7(38):23543-23549.

    5. [5]

      CHEN R, SHEEHAN T, NG J L, BRUCKS M, SU X. Environ. Sci.:Water Res. Technol., 2020, 6(2):258-282.

    6. [6]

      JIN W, HU M. J. Electrochem. Soc., 2019, 166(2):E29-E34.

    7. [7]

      ZHANG Y, ZHANG D, ZHOU L, ZHAO Y, CHEN J, CHEN Z, WANG F. Chem. Eng. J., 2018, 336:690-700.

    8. [8]

      ALLIOUX F M, KAPRUWAN P, MILNE N, KONG L, FATTACCIOLI J, CHEN Y, DUMEE L F. Sep. Purif.Technol., 2018, 194:26-32.

    9. [9]

      PAN L, WANG Z, YANG Q, HUANG R. Nanomaterials, 2018, 8(11):957.

    10. [10]

      WANG X, WANG Z, CHEN H, WU Z. J. Hazard. Mater., 2017, 339:182-190.

    11. [11]

      WU Q, WANG D, CHEN C, PENG C, CAI D, WU Z. J. Environ. Manage., 2021, 290:112626.

    12. [12]

      WANG H, ZHANG H, ZHANG X, LI Q, CHENG C, SHEN H, ZHANG Z. Environ. Res., 2020, 186:109582.

    13. [13]

      ZHANG Y N, NIU Q, GU X, YANG N, ZHAO G. Nanoscale, 2019, 11(25):11992-12014.

    14. [14]

    15. [15]

      GONZALEZ M A, TROCOLI R, PAVLOVIC I, BARRIGA C, LA MANTIA F. Phys. Chem. Chem. Phys., 2016, 18(3):1838-1845.

    16. [16]

      YANG L M, HU W B, CHANG Z W, LIU T, FANG D F, SHAO P H, SHI H, LUO X B. Environ. Int., 2021, 152:106512.

    17. [17]

      HU C, LIU F, LAN H, LIU H, QU J. J. Colloid Interface Sci., 2015, 446:359-365.

    18. [18]

      WANG P S, MA W T, XUE S, WANG L, CHEN Y, WANG Y L. Sep. Purif. Technol., 2021, 276:119336.

    19. [19]

      SON M, JEONG K, YOON N, SHIM J, PARK S, PARK J, CHO K H. Chemosphere, 2021, 276:130133.

    20. [20]

      WANG C, CHEN L, LIU S. J. Colloid Interface Sci., 2019, 548:160-169.

    21. [21]

      DORJI P, PHUNTSHO S, KIM D I, LIM S, PARK M J, HONG S, SHON H K. Chemosphere, 2021, 287:132169.

    22. [22]

      SU X, HATTON T A. Adv. Colloid Interface Sci., 2017, 244:6-20.

    23. [23]

      JIN W, ZHANG Y. ACS Sustain. Chem. Eng., 2020, 8(12):4693-4707.

    24. [24]

      ZHANG C, HE D, MA J, TANG W, WAITE T D. Water Res., 2018, 128:314-330.

    25. [25]

      KALFA A, SHAPIRA B, SHOPIN A, COHEN I, AVRAHAM E, AURBACH D. Chemosphere, 2020, 241:125003.

    26. [26]

      WANG Z, XU X, KIM J, MALGRAS V, MO R, LI C, LIN Y, TAN H, TANG J, PAN L, BANDO Y, YANG T, YAMAUCHI Y. Mater. Horiz., 2019, 6(7):1433-1437.

    27. [27]

      CAI Y, WANG Y, HAN X, ZHANG L, XU S, WANG J. J. Electroanal. Chem., 2016, 768:72-80.

    28. [28]

      WANG L, WANG M, HUANG Z, CUI T, GUI X, KANG F, WANG K, WU D. J. Mater. Chem., 2011, 21(45):18295-18299.

    29. [29]

      YANG Z, JIN L, LU G, XIAO Q, ZHANG Y, JING L, ZHANG X, YAN Y, SUN K. Adv. Funct. Mater., 2014, 24(25):3917-3925.

    30. [30]

      ZHU Y, ZHANG G, XU C, WANG L. ACS Appl. Mater. Interfaces, 2020, 12(26):29706-29716.

    31. [31]

    32. [32]

      AL RADI M, SAYED E T, ALAWADHI H, ABDELKAREEM M A. Crit. Rev. Environ. Sci. Technol., 2021, DOI10.1080/10643389.2021.1902698.

    33. [33]

      XU X, LIU Y, WANG M, YANG X, ZHU C, LU T, ZHAO R, PAN L. Electrochim. Acta, 2016, 188:406-413.

    34. [34]

      DAI M, ZHANG M, XIA L, LI Y, LIU Y, SONG S. ACS Sustainable Chem. Eng., 2017, 5(8):6532-6538.

    35. [35]

      GAIKWAD M S, BALOMAJUMDER C. Sep. Purif. Technol., 2018, 195:305-313.

    36. [36]

      BHARATH G, RAMBABU K, BANAT F, HAI A, ARANGADI A F, PONPANDIAN N. Sci. Total Environ., 2019, 691:713-726.

    37. [37]

      LIU Y, QIAO Y, ZHANG W, LI Z, HU X, YUAN L, HUANG Y. J. Mater. Chem., 2012, 22(45):24026.

    38. [38]

      WANG B, PARK J, SU D, WANG C, AHN H, WANG G. J. Mater. Chem., 2012, 22(31):15750.

    39. [39]

      YIN H, ZHAO S, WAN J, TANG H, CHANG L, HE L, ZHAO H, GAO Y, TANG Z. Adv. Mater., 2013, 25(43):6270-6276.

    40. [40]

      WANG H Y, HE Y J, CHAI L Y, LEI H, YANG W C, HOU L J, YUAN T, JIN L F, TANG C J, LUO J. Carbon, 2019, 153:12-20.

    41. [41]

      PENG Q, LIU L, LUO Y, ZHANG Y, TAN W, LIU F, SUIB S L, QIU G. ACS Appl. Mater. Interfaces, 2016, 8(50):34405-34413.

    42. [42]

      SU X, TAN K J, ELBERT J, RÜTTIGER C, GALLEI M, JAMISON T F, HATTON T A. Energy Environ. Sci., 2017, 10(5):1272-1283.

    43. [43]

      QIAO Q, YANG X, LIU L, LUO Y, TAN W, LIU C, DANG Z, QIU G. J. Hazard. Mater., 2020, 390:122165.

    44. [44]

    45. [45]

      LI M, PARK H G. ACS Appl. Mater. Interfaces, 2018, 10(3):2442-2450.

    46. [46]

      AMARRAY A, EL GHACHTOULI S, SAMIH Y, DAHBI M, AZZI M. Desalination, 2022, 521:115307.

    47. [47]

      LIU L H, QIU G H, SUIB S L, LIU F, ZHENG L R, TAN W F, QIN L H. Chem. Eng. J., 2017, 328:464-473.

    48. [48]

      LI N, AN J, WANG X, WANG H, LU L, REN Z. Desalination, 2017, 419:20-28.

    49. [49]

      BAKER C O, HUANG X W, NELSON W, KANER R B. Chem. Soc. Rev., 2017, 46(5):1510-1525.

    50. [50]

      WEI Y, XU L, YANG K, WANG Y, WANG Z, KONG Y, XUE H. J. Electrochem. Soc., 2017, 164(2):E17-E22.

    51. [51]

      LI Y, QI J, LI J, SHEN J, LIU Y, SUN X, SHEN J, HAN W, WANG L. ACS Sustainable Chem. Eng., 2017, 5(8):6635-6644.

    52. [52]

      LUO J Y, TIAN D C, DING Z B, LU T, XU X T, PAN L K. J. Electroanal. Chem., 2019, 855:113488.

    53. [53]

      GAO Y, LI Z, FU Z, ZHANG H, WANG G, ZHOU H. Sep. Purif. Technol., 2021, 262:118336.

    54. [54]

      LIN S, YANG X, LIU L, LI A, QIU G. J. Environ. Manage., 2022, 301:113921.

    55. [55]

      TAN K J, SU X, HATTON T A. Adv. Funct. Mater., 2020, 30(15):1910363.

    56. [56]

      SRIRAM S, NAMBI I M, CHETTY R. Electrochim. Acta, 2018, 284:427-435.

    57. [57]

      YANG X, LIU L, ZHANG M, TAN W, QIU G, ZHENG L. J. Hazard. Mater., 2019, 374:26-34.

    58. [58]

      SARKAR A, SARKAR A, PAUL B, KHAN G G. ChemCatChem, 2018, 10(19):4369-4379.

    59. [59]

      GAO K, CHEN J, LIU Z, LI Y, WU Y, ZHAO J, NA P. Chem. Eng. J., 2019, 360:1223-1232.

    60. [60]

      WANG Y, LI W, LI H, YE M, ZHANG X, GONG C, ZHANG H, WANG G, ZHANG Y, YU C. Chem. Eng. J., 2021, 414:128925.

    61. [61]

      BHOSALE M E, CHAE S, KIM J M, CHOI J Y. J. Mater. Chem. A, 2018, 6(41):19885-19911.

    62. [62]

      SU X, KUSHIMA A, HALLIDAY C, ZHOU J, LI J, HATTON T A. Nat. Commun., 2018, 9:4701.

    63. [63]

      WANG H, YUAN X, WU Y, CHEN X, LENG L, WANG H, LI H, ZENG G. Chem. Eng. J., 2015, 262:597-606.

    64. [64]

      XU Y, CHEN J, CHEN R, YU P, GUO S, WANG X. Water Res., 2019, 160:148-157.

    65. [65]

      KIM K, COTTY S, ELBERT J, CHEN R, HOU C H, SU X. Adv. Mater., 2020, 32(6):1906877.

    66. [66]

      SUN M, ZHANG G, QIN Y, CAO M, LIU Y, LI J, QU J, LIU H. Environ. Sci. Technol., 2015, 49(15):9289-9297.

    67. [67]

    68. [68]

      HANNULA P M, KHALID M K, JANAS D, YLINIEMI K, LUNDSTRöM M. J. Cleaner Prod., 2019, 207:1033-1039.

    69. [69]

      JIN W, SU J, ZHENG S, LEI H. J. Electrochem. Soc., 2017, 164(12):D723-D728.

    70. [70]

      LIU C, WU T, HSU P C, XIE J, ZHAO J, LIU K, SUN J, XU J, TANG J, YE Z, LIN D, CUI Y. ACS Nano, 2019, 13(6):6431-6437.

    71. [71]

      DOUGLAS F C, MATTHEW D M, BRUCE E L. Environ. Sci. Technol., 2009, 43(7):2179-2183.

    72. [72]

      KULEYIN A, UYSAL H E. Int. J. Electrochem. Sci., 2020, 15(2):1474-1485.

    73. [73]

      WANG C, LI T, YU G, DENG S. Chemosphere, 2021, 263:128208.

    74. [74]

      LOU W, CAI W, LI P, SU J, ZHENG S, ZHANG Y, JIN W. Powder Technol., 2018, 326:84-88.

    75. [75]

      SU J, LIN X, ZHENG S, NING R, LOU W, JIN W. Sep. Purif. Technol., 2017, 182:160-165.

    76. [76]

      JIN W, LAFOREST P I, LUYIMA A, READ W, NAVARRO L, MOATS M S. RSC Adv., 2015, 5(62):50372-50378.

    77. [77]

      WANG K, MO Z, TANG S, LI M, YANG H, LONG B, WANG Y, SONG S, TONG Y. J. Mater. Chem. A, 2019, 7(23):14129-14135.

    78. [78]

      WANG D, LI Y, PUMA G, LIANOS P, WANG C, WANG P. J. Hazard. Mater., 2017, 323:681-689.

    79. [79]

      YANG Z, LI J, CHEN F, XU L, JIN Y, XU S, WANG J, SHEN X, ZHANG L, SONG Y. Sci. Total Environ., 2021, 798:149327.

  • 加载中
    1. [1]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    2. [2]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    10. [10]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    11. [11]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(33)
  • Abstract views(931)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return