Citation: WANG Xue-Mei,  ZHAO Sui-Xin,  LI Hai-Yin,  LI Feng. Target-controlled In-Situ Formation of Quantum Dots for Fluorescence Sensing of Methidathion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 375-383. doi: 10.19756/j.issn.0253-3820.210847 shu

Target-controlled In-Situ Formation of Quantum Dots for Fluorescence Sensing of Methidathion

  • Corresponding author: LI Hai-Yin,  LI Feng, 
  • Received Date: 18 November 2021
    Revised Date: 9 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21775082, 22076090).

  • A highly sensitive and reliable fluorescence sensor for detection of organophosphorus pesticide (OP) based on target-controlled in-situ formation of sadmium sulfide quantum dots (CdS QDs) was developed. Acetylcholinesterase (AChE) catalyzed hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh), which acted as stabilizing agent to induce the formation of CdS QDs, subsequently improving the emission intensity. Whereas, upon the addition of target methidathion (Met), AChE activity was depressed and thus was not capable of catalyzing hydrolysis of ATCh into TCh. In this context, CdS QDs were not formed and the emission intensity of detection solution was not enhanced, justifying the close relationship between fluorescence signal and Met concentration. Therefore, highly sensitive analysis of Met was achieved on the basis of change in fluorescence emission with a limit of detection of 0.024 ng/mL (S/N=3). Furthermore, the developed fluorescence sensor was successfully employed to detect Met in extract solution of rice with recoveries of 96.7%-102.4%. Overall, the CdS QDs-based sensor presented a new thinking way to highly sensitive and reliable analysis of OPs, favoring OPs-related food safety.
  • 加载中
    1. [1]

      LUO D Q, HUANG X H, LIU B Y, ZOU W Y, WU Y G. J. Agric. Food Chem., 2021, 69(11):3537-3547.

    2. [2]

      CAI Y, FANG J K, WANG B F, ZHANG F S, SHAO G, LIU Y J. Sens. Actuators, B, 2019, 292:156-163.

    3. [3]

      LIU B Y, TANG Y, YANG Y X, WU Y G. Food Control, 2021, 129:108208.

    4. [4]

      ZHOU J W, ZOU X M, SONG S H, CHEN G H. J. Agric. Food Chem., 2018, 66(6):1307-1319.

    5. [5]

      CHEN J L, CHEN X J, HUANG Q Y, LI W L, YU Q X, ZHU L J, ZHU T W, LIU S W, CHI Z G. ACS Appl. Mater. Interfaces, 2019, 11(36):32689-32696.

    6. [6]

      GARAI-IBABE G, SAA L, PAVLOV V. Analyst, 2014, 139(1):280-284.

    7. [7]

      HE X J, DENG Z A, XU W, LI Y H, XU C C, CHEN H, SHEN J L. Sens. Actuators, B, 2020, 321:128450.

    8. [8]

      LU C, CHEN X. ACS Nano, 2021, 15(12):18777-18793.

    9. [9]

      SUN J H, ZHOU F, HU H, LI N, XIA M M, WANG L, WANG X Y, WANG G F. Anal. Chem., 2020, 92(8):6136-6143.

    10. [10]

      AHMAD I, ZHOU Z, LI H Y, ZANG S Q. Sens. Actuators, B, 2020, 304:127379.

    11. [11]

      ZHANG J, ZHOU W D, ZHAI L J, NIU X Y, HU T P. CrystEngComm, 2020, 22(6):1050-1056.

    12. [12]

      YUAN X Y, ZHANG D W, ZHU X C, LIU H L, SUN B G. Food Chem., 2021, 342:128299.

    13. [13]

      HE Y, HU F X, ZHAO J W, YANG G M, ZHANG Y Y, CHEN S H, YUAN R. Anal. Chem., 2021, 93(25):8783-8790.

    14. [14]

      HE W M, ZHOU Z, HAN Z, LI S, ZHOU Z, MA L F, ZANG S Q. Angew. Chem., Int. Ed., 2021, 60(15):8505-8509.

    15. [15]

      CAO Z Y, SHU Y F, QIN H Y, SU B, PENG X G. ACS Cent. Sci., 2020, 6(7):1129-1137.

    16. [16]

      ZHAO Q, LU D, ZHANG G Y, ZHANG D, SHI X B. Talanta, 2021, 223(Pt 1):121722.

    17. [17]

      CHEN Z P, WANG H, ZHANG Z Y, CHEN L X. Anal. Chem., 2019, 91(2):1254-1259.

    18. [18]

      CHEN X J, HE J H, TAN G Y, LIANG J, HOU Y X, WANG M, WANG B M. Food Chem., 2019, 291:132-138.

    19. [19]

      JIA M, CHEN S, SHI T T, LI C Y, WANG Y P, ZHANG H Y. Food Chem., 2021, 344:128602.

    20. [20]

      DONG C Y, SHI H X, HAN Y R, YANG Y Y, WANG R X, MEN J Y. Eur. Polym. J., 2021, 145:110231.

    21. [21]

      JIA M F, ZHANG Z, LI J H, MA X, CHEN L X, YANG X B. TrAC-Trends Anal. Chem., 2018, 106:190-201.

    22. [22]

      MADIKIZELA L M, TAVENGWA N T, TUTU H, CHIMUKA L. Trends Environ. Anal. Chem., 2018, 17:14-22.

    23. [23]

      KORRAM J, DEWANGAN L, KARBHAL I, NAGWANSHI R, VAISHANAV S K, GHOSH K K, SATNAMI M L. RSC Adv., 2020, 10(41):24190-24202.

    24. [24]

      SINGH A P, BALAYAN S, HOODA V, SARIN R K, CHAUHAN N. Int. J. Biol. Macromol., 2020, 164:3943-3952.

    25. [25]

      LV B J, WEI M, LIU Y J, LIU X, WEI W, LIU S Q. Microchim. Acta, 2016, 183(11):2941-2948.

    26. [26]

      WANG D, LIN B X, CAO Y J, GUO M L, YU Y. J. Agric. Food Chem., 2016, 64(30):6042-6050.

    27. [27]

      WANG J L, XIA Q, ZHANG A P, HU X Y, LIN C M. J. Zhejiang Univ. Sci. B, 2012, 13(4):267-273.

    28. [28]

      HUANG X B, LV M, MA Q J, ZHANG Y Y, XU H. J. Agric. Food Chem., 2021, 69(48):14488-14500.

    29. [29]

      GHOTO S A, KHUHAWAR M Y, JAHANGIR T M, MANGI J U D. J. Nanostruct. Chem., 2019, 9(2):77-93.

    30. [30]

      CHEN Q, SUN Y D, LIU S J, ZHANG J, ZHANG C, JIANG H, HAN X Y, HE L F, WANG S H, ZHANG K. Sens. Actuators, B, 2021, 344:130278.

    31. [31]

      FAHIMI-KASHANI N, HORMOZI-NEZHAD M R. Anal. Chem., 2016, 88(16):8099-8106.

    32. [32]

      WANG J Y, ZHANG J Y, WANG J, FANG G Z, LIU J F, WANG S. J. Hazard. Mater., 2020, 389:122074.

    33. [33]

      GUAN J P, YANG J, ZHANG Y, ZHANG X X, DENG H J, XU J, WANG J Y, YUAN M S. Talanta, 2021, 224:121834.

    34. [34]

      GUO W Y, FU Y X, LIU S Y, MEI L C, SUN Y, YIN J, YANG W C, YANG G F. Anal. Chem., 2021, 93(18):7079-7085.

    35. [35]

      FAN Y, LIU L, SUN D L, LAN H Y, FU H Y, YANG T M, SHE Y B, NI C. Anal. Chim. Acta, 2016, 916:84-91.

    36. [36]

      CHEN J L, LI M Q, ZHOU X Q, XIE A L, CAI Z W, FU C L, PENG Y M, ZHANG H, LIU L H. J. Agric. Food Chem., 2021, 69(46):13942-13952.

    37. [37]

      ZHANG J, WU Q Q, ZHONG Y R, WANG Z, HE Z Z, ZHANG Y Q, WANG M H. J. Agric. Food Chem., 2021, 69(45):13416-13424.

    38. [38]

      YAN X, LI H X, HU T Y, SU X G. Biosens. Bioelectron., 2017, 91:232-237.

    39. [39]

      CUI H F, ZHANG T T, LV Q Y, SONG X, ZHAI X J, WANG G G. Biosens. Bioelectron., 2019, 141:111452.

    40. [40]

      MONDOL M M H, JHUNG S H. Chem. Eng. J., 2021, 421(Part 1):129688.

    41. [41]

      ALDEWACHI H, CHALATI T, WOODROOFE M N, BRICKLEBANK N, SHARRACK B, GARDINER P. Nanoscale, 2017, 10(1):18-33.

    42. [42]

      LIN B X, YAN Y, GUO M L, CAO Y J, YU Y, ZHANG T Y, HUANG Y, WU D. Food Chem., 2018, 245:1176-1182.

    43. [43]

      LIU M L, WEI J Y, WANG Y, OUYANG H, FU Z F. Talanta, 2019, 195:706-712.

    44. [44]

      SAHOO D, MANDAL A, MITRA T, CHAKRABORTY K, BARDHAN M, DASGUPTA A K. J. Agric. Food Chem., 2018, 66(2):414-423.

    45. [45]

      CHEN Q D, FUNG Y. Electrophoresis, 2010, 31(18):3107-3114.

    46. [46]

      WANG P Y, LI H H, HASSAN M M, GUO Z M, ZHANG Z Z, CHEN Q. J. Agric. Food Chem., 2019, 67(14):4071-4079.

    47. [47]

      DONG J J, YANG H T, LI Y, LIU A R, WEI W, LIU S Q. Anal. Chim. Acta, 2020, 1131:102-108.

    48. [48]

      HONG C Y, YE S S, DAI C Y, WU C Y, CHEN L L, HUANG Z Y. Anal. Bioanal. Chem., 2020, 412(29):8177-8184.

    49. [49]

      WANG X D, YANG Y Y, DONG J, BEI F, AI S Y. Sens. Actuators, B, 2014, 204:119-124.

    50. [50]

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    3. [3]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    18. [18]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

Metrics
  • PDF Downloads(11)
  • Abstract views(771)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return