Citation: DING Yi,  DIAO Quan,  LIU Dong,  LIU An-fei,  JIAO Ming-li,  ZHU Gen-xing. Synthesis of Graphene Quantum Dots and Application in Gas Sensing[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 495-505. doi: 10.19756/j.issn.0253-3820.210843 shu

Synthesis of Graphene Quantum Dots and Application in Gas Sensing

  • Corresponding author: DIAO Quan,  JIAO Ming-li, 
  • Received Date: 17 November 2021
    Revised Date: 20 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 61703446, 51973246)

  • Graphene quantum dots(GQDs), as a kind of zero-dimensional carbon nano material, not only have excellent properties of graphene, but also have quantum confinement effect and boundary effect. GQDs with different nano-size can be obtained by various preparation methods. The surface of GQDs has abundant functional groups, which can be further functionalized by compounding with other materials to meet the detection requirements of different gases and broaden its application range in gas sensing. In this review, the preparation methods of GQDs and their applications in gas sensing are introduced. In addition, the application prospect and development direction of GQDs in gas sensing are also prospected.
  • 加载中
    1. [1]

      YAN Y, GONG J, CHEN J, ZENG Z, HUANG W, PU K, LIU J, CHEN P. Adv. Mater., 2019, 31(21):1808283.

    2. [2]

      ABBAS A, MARIANA L T, PHAN A N. Carbon, 2018, 140:77-99.

    3. [3]

      GHAFFARKHAH A, HOSSEINI E, KAMKAR M, SEHAT A A, DORDANIHAGHIGHI S, ALLAHBAKHSH A,VAN DER KUUR C, ARJMAND M. Small, 2022, 18(2):2102683.

    4. [4]

      ZHENG X T, ANANTHANARAYANAN A, LUO K Q, CHEN P. Small, 2015, 11(14):1620-1636.

    5. [5]

    6. [6]

      CHEN W, LI F, OOI P C, YE Y, KIM T W, GUO T. Sens. Actuators, B, 2016, 222:763-768.

    7. [7]

      ABBASABADI M K, ZAND H R E, KHODABAKHSHI S, GHOLAMI P, RASHIDI A. Res. Chem. Intermed.,2021, 47(6):2279-2296.

    8. [8]

    9. [9]

    10. [10]

      MENG Q N, CUI J N, TANG Y F, HAN Z H, ZHAO K, ZHANG G J, DIAO Q. Ceram. Int., 2019, 45(3):4103-4107.

    11. [11]

      DIAO Q, YIN Y N, ZHANG X M, LI J, JIAO M L, CAO J, QIN Q, YANG K, ZHU G X, XU X M. Funct. Mater.Lett., 2020, 13(3):2050013.

    12. [12]

      HAO M, ZENG W, LI Y Q, WANG Z C. Rare Metals, 2021, 40(6):1494-1514.

    13. [13]

      HAKIMI M, SALEHI A, BOROUMAND F A. IEEE Sens. J., 2016, 16(16):6149-6154.

    14. [14]

      LU J, YANG J X, WANG J, LIM A, WANG S, LOH K P. ACS Nano, 2009, 3(8):2367-2375.

    15. [15]

      PENG J, GAO W, GUPTA B K, LIU Z, ROMERO-ABURTO R, GE L, SONG L, ALEMANY L B, ZHAN X, GAO G,VITHAYATHIL S A, KAIPPARETTU B A, MARTI A A, HAYASHI T, ZHU J J, AJAYAN P M. Nano Lett., 2012,12(2):844-849.

    16. [16]

      PAN D, ZHANG J, LI Z, WU M. Adv. Mater., 2010, 22(6):734-738.

    17. [17]

      WONGRAT E, NUENGNIT T, PANYATHIP R, CHANLEK N, HONGSITH N, CHOOPUN S. Sens. Actuators, B,2021, 326:128983.

    18. [18]

      HUANG H, YANG S, LI Q, YANG Y, WANG G, YOU X, MAO B, WANG H, MA Y, HE P, LIU Z, DING G, XIE X.Langmuir, 2018, 34(1):250-258.

    19. [19]

      SU J, ZHANG X, TONG X, WANG X, YANG P, YAO F, GUO R, YUAN C. Mater. Lett., 2020, 271:127806.

    20. [20]

      LU J, YEO P S, GAN C K, WU P, LOH K P. Nat. Nanotechnol., 2011, 6(4):247-252.

    21. [21]

      KACIULIS S, MEZZI A, SOLTANI P, PIZZOFERRATO R, CIOTTA E, PROSPOSITO P. Thin Solid Films, 2019,673:19-25.

    22. [22]

      HOANG T T, PHAM H P, TRAN Q T. J. Nanomater., 2020, 2020:1-8.

    23. [23]

      TANG L, JI R, LI X, TENG K S, LAU S P. Part. Part. Syst. Char., 2013, 30(6):523-531.

    24. [24]

      SHEHAB M, EBRAHIM S, SOLIMAN M. J. Lumin., 2017, 184:110-116.

    25. [25]

      DONG Y Q, SHAO J W, CHEN C Q, LI H, WANG R X, CHI Y W, LIN X M, CHEN G N. Carbon, 2012, 50(12):4738-4743.

    26. [26]

      WANG Z, YU J, ZHANG X, LI N, LIU B, LI Y, WANG Y, WANG W, LI Y, ZHANG L, DISSANAYAKE S, SUIB S L, SUN L. ACS Appl. Mater. Interfaces, 2016, 8(2):1434-1439.

    27. [27]

      LIN Q, CHEN H, CAO J, ZHANG J. ACS Omega, 2021, 6(38):24940-24948.

    28. [28]

      ABBAS A, TABISH T A, BULL S J, LIM T M, PHAN A N. Sci. Rep., 2020, 10:21262.

    29. [29]

      YEH T F, HUANG W L, CHUNG C J, CHIANG I T, CHEN L C, CHANG H Y, SU W C, CHENG C, CHEN S J,TENG H. J. Phys. Chem. Lett., 2016, 7(11):2087-2092.

    30. [30]

      YE R, PENG Z, METZGER A, LIN J, MANN J A, HUANG K, XIANG C, FAN X, SAMUEL E L G, ALEMANY L B, MART A A, TOUR J M. ACS Appl. Mater. Interfaces, 2015, 7(12):7041-7048.

    31. [31]

      KWON W, KIM Y H, LEE C L, LEE M, CHOI H C, LEE T W, RHEE S W. Nano Lett., 2014, 14(3):1306-1311.

    32. [32]

    33. [33]

      MENG F L, SHI X, YUAN Z Y, JI H Y, QIN W B, SHEN Y B, XING C Y. Sens. Actuators, B, 2022, 350:130867.

    34. [34]

      LV Y K, LI Y Y, YAO H C, LI Z J. Sens. Actuators, B, 2021, 339:129882.

    35. [35]

      HAKIMI M, SALEHI A, BOROUMAND F A, MOSLEH N. IEEE Sens. J., 2018, 18(6):2245-2252.

    36. [36]

      PARVIZI R, AZAD S, DASHTIAN K, GHAEDI M, HEIDARI H. Sci. Rep., 2019, 9:3798.

    37. [37]

      RAHIMI K, YAZDANI A. Mater. Lett., 2018, 228(OCT.1):65-67.

    38. [38]

      ZHANG Y M, ZHAO J H, SUN H L, ZHU Z Q, ZHANG J, LIU Q J. Sens. Actuators, B, 2018, 266:364-374.

    39. [39]

      LIU W, ZHOU X, XU L, ZHU S, YANG S, CHEN X, DONG B, BAI X, LU G, SONG H. Nanoscale, 2019, 11(24):11496-11504.

    40. [40]

      ARUNRAGSA S, SEEKAEW Y, PON-ON W, WONGCHOOSUK C. Diamond Relat. Mater., 2020, 105:107790.

    41. [41]

      BAI H, SHI G. Sensors, 2007, 7(3):267-307.

    42. [42]

      GAVGANI J N, HASANI A, NOURI M, MAHYARI M, SALEHI A. Sens. Actuators, B, 2016, 229:239-248.

    43. [43]

      LV Y K, LI Y Y, ZHOU R H, PAN Y P, YAO H C, LI Z J. ACS Appl. Mater. Interfaces, 2020, 12(30):34245-34253.

    44. [44]

      ZHANG Y H, WANG C N, YUE L J, CHEN J L, GONG F L, FANG S M. Phys. E(Amsterdam, Neth.), 2021, 133:114807.

    45. [45]

      CHEN Z, WANG D, WANG X, YANG J. Chin. Chem. Lett., 2020, 31(8):2063-2066.

    46. [46]

      SHAO S F, KIM H W, KIM S S, CHEN Y Y, LAI M. Appl. Surf. Sci., 2020, 516:145932.

    47. [47]

      CHU X F, DAI P, DONG Y P, SUN W Q, BAI L S, ZHANG W B. J. Mater. Sci.:Mater. Electron., 2017, 28(24):19164-19173.

    48. [48]

      RAEYANI D, SHOJAEI S, AHMADI-KANDJANI S. Superlattices Microstruct., 2018, 114:321-330.

    49. [49]

      RAEYANI D, SHOJAEI S, AHMADI-KANDJANI S. Mater. Res. Express, 2020, 7(1):015608.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    15. [15]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    16. [16]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(11)
  • Abstract views(573)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return