Citation: LI Cong,  YANG Jin-Chuan,  WANG Kai-Qiang,  ZHU Wen-Chao,  DING Zhi-Jun,  HUANG Bang-Dou,  ZHANG Cheng,  SHAO Tao. Detection of Toxic Simulant Phosphorus and Chlorine by Atmospheric Pressure Microwave Plasma Optical Emission Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(9): 1425-1434. doi: 10.19756/j.issn.0253-3820.210838 shu

Detection of Toxic Simulant Phosphorus and Chlorine by Atmospheric Pressure Microwave Plasma Optical Emission Spectrometry

  • Corresponding author: ZHU Wen-Chao,  HUANG Bang-Dou, 
  • Received Date: 16 November 2021
    Revised Date: 8 May 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.51925703, 51907190) and the State Key Laboratory of NBC Protection for Civilian (No.FHSKL201903).

  • The optical emission spectroscopy (OES) from atmospheric pressure microwave (MW) plasma was proposed for detection of trace toxic agents, such as phosphorus and chlorine. Characteristic OES of dimethyl methylphosphonate (DMMP), malathion and chloroform, as simulant of phosphorus and chlorine toxics, was analyzed and identified. The characteristic OES of DMMP included P atomic lines (213.62 and 214.91 nm), PO radical bands (254.04 and 255.50 nm), and C atomic line (247.86 nm). The characteristic OES of malathion was the same as that of DMMP, but their relative intensity was different, which could be used to discriminate the two chemicals. The characteristic OES of chloroform included Cl atoms (725.66, 754.71, 837.59, 858.60 and 894.81 nm, etc). By taking the characteristic OES of DMMP as an example, the OES intensity had a linear relationship with the MW power within the range of 40-110 W. As for the impact of OES collection region, OES intensity of the object to be detected at the head of the MW plasma was the highest, and those at the middle and tail were reduced in turn. With a MW power of 70 W and collection region from plasma head, the detection limit of DMMP, malathion and chloroform were 0.05, 3.3 and 1.8 mg/m3, respectively. This work presented an atomic/molecular OES detection method using MW plasma and proposed that the relative OES intensity strategy could be used to discriminate chemicals with same characteristic OES, which provided a technical reference for detection of trace toxic agents.
  • 加载中
    1. [1]

      WITKIEWICZ Z, NEFFE S, SLIWKA E, QUAGLIANO J. Crit. Rev. Anal. Chem., 2018, 48(5):337-371.

    2. [2]

      SUN Y, ONG K Y. Detection Technologies for Chemical Warfare Agents and Toxic Vapors (1st ed), CRC Press, 2004.

    3. [3]

      LIU X, CHENG S, LIU H, HU S, ZHANG D, NING H. Sensors, 2012, 12(7):9635-9665.

    4. [4]

      GENTILI A, FANALI S, ROCCA L M. TrAC, Trends Anal. Chem., 2019, 115:162-173.

    5. [5]

      WEBBER M E, PUSHKARSKY M, PATEL C K N. J. Appl. Phys. 2005, 97(11):113101.

    6. [6]

    7. [7]

    8. [8]

      SHAO T, WANG R, ZHANG C, YAN P. High Volt., 2018, 3(1):14-20.

    9. [9]

      NIU G H, KNODEL A, BURHENN S, BRANDT S, FRANZKE J. Anal. Chim. Acta, 2021, 1147:211-239.

    10. [10]

    11. [11]

      JUNG M Y, KANG J H, CHOI Y S, LEE D Y, LEE J Y, PARK J S. Food. Chem., 2019, 274:20-25.

    12. [12]

      YUAN H, ZHOU X, NIE Y, LI Y, LIANG J, YANG D, YAN E, WANG W, XU Y. Spectrochim. Acta, Part B, 2021, 177:106072.

    13. [13]

    14. [14]

      LI M, HUANG S, XU K, JIANG X, HOU X. Talanta, 2018, 188:378-384.

    15. [15]

      HAN B, LI Y, QIAN B, HE Y, PENG L, YU H. Analyst, 2018, 143:2790-2798.

    16. [16]

      ZHU Z, GUAN X, ZHENG H, YANG C, XING Z, HU S. J. Anal. At. Spectrom., 2018, 33(12):2153-2159.

    17. [17]

      DUROCHER-JEAN A, DESJARDINS E, STAFFORD L. Phys. Plasmas, 2019, 26(6):063516.

    18. [18]

    19. [19]

    20. [20]

      NIST Standard Reference Database 78 Atomic Spectra Database DOI:10.18434/T4W30F.

    21. [21]

      GAYDON A G, PEARSE R W B. The Identification of Molecular Spectra (3rd ed), Chapman & Hall LTD, 1963.

    22. [22]

      MOISAN M, NOWAKOWSKA H. Plasma Sources Sci. Technol., 2018, 27(7):073001.

    23. [23]

      YU J, ZHANG W, WU X, WU L, TAO J, HUANG K. AIP Adv., 2021, 11(2):025131.

    24. [24]

      HE W, LIU Z, DU X, JIANG Y, XIAO D. Talanta, 2008, 76(3):698-702.

    25. [25]

      KONG L, WANG J, LUO T, MENG F, CHEN X, LIA M, LIU J. Analyst, 2010, 135(2):368-374.

    26. [26]

      BAKER P A, GOLTZ M N, SCHRAND A M, YOON D Y, KIM D S. Biosens. Bioelectron., 2014, 61:119-123.

    27. [27]

      MARAVIC D S, TRTICA M S, MILJANIC S S, RADAK B B. Anal. Chim. Acta, 2006, 555(2):259-262.

    28. [28]

      SUN P, JIANG Y, XIE G, YU J, DU X, HU J. Appl. Polymer, 2010, 116(15):562-567.

    29. [29]

      MOHEBBIFAR M R. Microw. Opt. Technol. Lett., 2019, 61(9):2234-2241.

  • 加载中
    1. [1]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    10. [10]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    20. [20]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

Metrics
  • PDF Downloads(6)
  • Abstract views(251)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return