Citation: ZHAO Bin,  TAN Xue-Rong,  FU Yu,  XUE Ming,  XU Dong-Hai,  LIANG Xiu-Chuan,  ZHANG Li. Rapid Determination of Bisphenols in Fruits and Vegetables by QuEChERS-Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 810-818. doi: 10.19756/j.issn.0253-3820.210837 shu

Rapid Determination of Bisphenols in Fruits and Vegetables by QuEChERS-Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • Corresponding author: TAN Xue-Rong, 545619934@qq.com
  • Received Date: 14 November 2021
    Revised Date: 31 December 2021

    Fund Project: Supported by the Guangyuan Science and Technology Project (No.19ZDYF0016).

  • A method for rapid determination of eight kinds of BPs in fruits and vegetables based on QuEChERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed. The effects of matrix effect (ME) and extraction recovery (RE) on process efficiency (PE) were discussed. Approximately 10.00 g of homogeneous fruit and vegetable samples were accurately weighed, and 10 mL of acetonitrile and 1.0 g of NaAC were added for extraction, respectively. And then, 2 mL of organic phase was taken into a 15-mL centrifuge tube, and the mixed purifier (33 mg PSA, 33 mg GCB and 10 mg C18) was added for purification. After centrifugation, 0.5 mL of supernatant was added into 0.5 mL of methanol aqueous solution (50%, V/V), and the mixture was analyzed by UPLC-MS/MS. The chromatographic separation was performed on a Waters BEH C18 (100 mm × 2.1 mm, 1.7 μm) column using methanol and 0.1 mmol/L ammonium bicarbonate aqueous solution as mobile phase. Quantitative analysis was performed by isotope internal standard method in the modes of electrospray ionization, anion and multiple reaction monitoring. The results showed that the chromatographic separation of eight kinds of BPs could be completed within 8 min with good linearity and correlation coefficients (R2>0.9990). The limits of detection (LODs) and limits of quantification (LOQs) ranged from 0.01 to 0.10 μg/kg and 0.03 to 0.35 μg/kg, respectively. The average recoveries of eight kinds of BPs in different fruits and vegetables were 67.2%-117.8% with relative standard deviations (RSDs) of 0.1%-8.3%. This method was used to detect BPs in fruits and vegetables from Guangyuan city, and it bisphenol A and bisphenol S were found to be the main contaminants with the detection rates of 80.0% and 47.5%, respectively. The concentrations of bisphenol A and bisphenol S ranged from not detected to 31.84 μg/kg and from not detected to 15.75 μg/kg, respectively. This method could rapidly extract, purify and quantitatively detect eight kinds of BPs in fruits and vegetables with the advantages such as simplicity, high sensitivity, low cost and environmental protection, and was suitable for daily mass screening and confirmation of these contaminants in fruits and vegetables.
  • 加载中
    1. [1]

      KUBIAK A, BIESAGA M. Crit. Rev. Anal. Chem., 2020, 4(50):311-321.

    2. [2]

      SCHMIDT J, MASIC L P. Acta Chim. Slov., 2012, 59(4):722-738.

    3. [3]

      DA C, KANNAN K, TAN H L, ZHENG Z G, FENG Y L, WU Y, WIDELKA M. Environ. Sci. Technol., 2016, 50(11):5438-5453.

    4. [4]

      ROCHESTERJ R, BOLDENA L. Environ. Health Perspect., 2015, 123(7):643-650.

    5. [5]

    6. [6]

      MU X Y, HUANG Y, LI X X, LEI Y L, TENG M M, LI X F, WANG C J, LI Y R. Environ. Sci. Technol., 2018, 52(5):3222-3231.

    7. [7]

      CAO L Y, REN X M, LI C H, ZHANG J, QIN W P, YANG Y, WAN B, GUO L H. Environ. Sci. Technol., 2017, 51(19):11423-11430.

    8. [8]

      QIU W H, YANG M, LIU S, LEI P H, HU L, CHEN B, WU M H, WANG K J. Environ. Sci. Technol., 2018, 52(2):831-838.

    9. [9]

      ZHU M,CHEN X Y, LI Y Y, YIN N Y, FAIOLA F, QIN Z F, WEI W J. Environ. Sci. Technol., 2018, 52(3):1602-1611.

    10. [10]

      GALLART-AYALA H, NÚÑEZ O, LUCCI P. TrAC-Trends Anal. Chem., 2013, 42(1):99-124.

    11. [11]

      YU X H, XUE J C, YAO H, WU Q, VENKATESANA K, HALDENR U, KANNAN K. J. Hazard. Mater., 2015, 299:733-739.

    12. [12]

    13. [13]

      LIAO C Y, KANNAN K. J. Agric. Food Chem., 2013, 61(19):4655-4662.

    14. [14]

    15. [15]

    16. [16]

    17. [17]

      HUANG Y Q, WONG C K C, ZHENG J S, BOUWMAN H, BARRA R, WAHLSTRÖM B, NERETIN L, WONG M H. Environ. Int., 2012, 42:91-99.

    18. [18]

      VANDENBERG L N, COLBORN T, HAYES T B, HEINDEL J J, JACOBS D R, LEE D H, SHIODA T, SOTO A M, SAAL F S V, WELSHONS W V, ZOELLER R T, MYERS J P. Endocr. Rev., 2012, 33(3):378-455.

    19. [19]

      CHOI S J, YUN E S, SHIN J M, KIM Y S, LEE J S, LEE J H, KIM D G, OH Y H, JUNG K, KIMG H. J. Food Prot., 2018, 81(6):903-916.

    20. [20]

    21. [21]

    22. [22]

      ALABI A, CABALLERO-CASERON, RUBIO S. J. Chromatogr. A, 2014, 1336:23-33.

    23. [23]

    24. [24]

      LIU X Y, JI Y S, ZHANG H X, LIU M C. Food Addit. Contam., Part A, 2008, 25(6):772-778.

    25. [25]

      SHAO B, HAN H, LI D M, MA Y L, TU X M, WU Y. Food Chem., 2007, 105(3):1236-1241.

    26. [26]

      FERRER E, SANTONI E, VITTORI S, FONT G, MAHESJ, SAGRATINI G. Food Chem., 2011, 126(1):360-367.

    27. [27]

    28. [28]

      MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Anal. Chem., 2003, 75(13):3019-3030.

    29. [29]

      LI G R,YU W Q, XIAO Z J, LONG M, TONG L Y, QIU Y. SN Appl. Sci., 2020, 2(1):35.

    30. [30]

    31. [31]

      LU J, WU J, STOFFELLA P J, WILSONP C. J. Agric. Food Chem., 2013, 61(1):84-89.

    32. [32]

      ČESEN M, LAMBROPOULOU D, LAIMOU-GERANIOU M, KOSJEK T, BLAZNIK U, HEATH D,HEATH E. J. Agric. Food Chem., 2016, 64(46):8866-8875.

    33. [33]

      CUNHA S C, INÁCIO T, ALMADA M, FERREIRA R, FERNANDESJ O. Food Res. Int., 2020, 135:109-293.

    34. [34]

      XIONG L, YAN P, CHU M, GAO Y Q, LI W H, YANG X L. Food Chem., 2017, 244:371-377.

    35. [35]

      CHENG Y, NIE X M, WU H Q, HONG Y H, YANG B C, LIU T, ZHAO D, WANG J F, YAO G H, ZHANG F. Anal. Chim. Acta, 2017, 950:98-107.

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    10. [10]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Bing Yuan Fengli Yu Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032

Metrics
  • PDF Downloads(14)
  • Abstract views(566)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return