Citation: JIANG Bing-xue,  ZHANG Xiao-mei,  WANG Zhi-hong,  LI Zhao-jie,  ZHAO Xue,  XU Jie,  HOU Hu,  ZHAO Sa,  ZHANG Hong-wei,  XUE Zhang-hu. Traceability Analysis of Geographical Origin of Fish and Shrimp Products Based on Proteomics[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(4): 613-622. doi: 10.19756/j.issn.0253-3820.210834 shu

Traceability Analysis of Geographical Origin of Fish and Shrimp Products Based on Proteomics

  • Corresponding author: ZHANG Hong-wei,  XUE Zhang-hu, 
  • Received Date: 11 November 2021
    Revised Date: 18 January 2022

    Fund Project: Supported by the Scientific Program of the General Administration of Customs of China( No. 2020HK209), the National Key Research and Development Program of China( No. 2018YFC0311206) and the Research Project of Qingdao Customs District( Nos. QK201917, QK202101).

  • The proteomes of white shrimp(Penaeus vannamei), black tiger shrimp(Penaeus monodon), cod(Dissostichus eleginoides) and Atlantic salmon(Salmo salar)from different geographical origins were investigated using ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry based on relatively quantitative differential proteomics. The quantitative protein data of samples from different geographical origins were mined by chemometric tools to reveal proteomic differences. By screening analysis of parameters such as variable importance in projection, S-plot analysis, knife-cut confidence interval and fold change, 15, 3, 2 and 19 potential protein biomarkers corresponding to Penaeus vannamei, Penaeus monodon, Dissostichus eleginoides and Salmo salar were obtained respectively for identifying the geographical origin of fish and shrimp products. The proposed protocol provided an alternative method for geographical provenance of important aquaculture products in international trade and basic data for supporting official control of geographical origin as well as quality controls of aquaculture products.
  • 加载中
    1. [1]

    2. [2]

      ARMANI A, GUARDONE L, LA CASTELLANA R, GIANFALDONI D, GUIDI A, CASTIGLIEGO L. Food Control, 2015, 55:206-214.

    3. [3]

      TATSADJIEU N L, MAÏWORÉ J, HADJIA M B, LOISEAU G, MONTET D, MBOFUNG C M F. Food Control, 2010, 21(5):673-678.

    4. [4]

      LE NGUYEN D D, NGOC H H, DIJOUX D, LOISEAU G, MONTET D. Food Control, 2008, 19(5):454-460.

    5. [5]

      YUN Z Y, SUN Z, XU H Y, SUN Z H, ZHANG Y, LIU Z. Food Sci. Biotechnol., 2017, 26(2):357-362.

    6. [6]

      LUO R J, JIANG T, CHEN X B, ZHENG C C, LIU H B, YANG J. Food Chem., 2019, 274:1-7.

    7. [7]

      ZHANG X F, LIU Y, LI Y, ZHAO X D. Food Chem., 2017, 218:269-276.

    8. [8]

      HAN C, LI L, ZHANG G, DONG S L, TIAN X L. Food Control, 2021, 130:108231.

    9. [9]

      LI L, BOYD C E, ODOM J. Food Control, 2014, 45:70-75.

    10. [10]

      LIU X F, XUE C H, WANG Y M, LI Z J, XUE Y, XU J. Food Control, 2012, 23(2):522-527.

    11. [11]

      ZHANG X F, HAN D M, CHEN X J, ZHAO X D, CHENG J P, LIU Y. Food Chem., 2019, 298:124966.

    12. [12]

    13. [13]

      FENG J H, ZHANG L N, XIA X B, HU W, ZHOU P. Food Res. Int., 2020, 136:109498.

    14. [14]

      KUMARI N, GRIMBS A, D'SOUZA R N, VERMA S K, CORNO M, KUHNERT N, ULLRICH M S. Food Res. Int., 2018, 111:137-147.

    15. [15]

      YIN X J, WANG S L, ALOLGA R N, MAIS E, LI P, YANG P F, KOMATSU S, QI L W. Food Chem., 2018, 249: 1-7.

    16. [16]

      LI Y L, LI R H, YE Y F, MU C K, WANG C L. J. Appl. Anim. Res., 2019, 47(1):314-321.

    17. [17]

      TENORI L, SANTUCCI C, MEONI G, MORROCCHI V, MATTEUCCI G, LUCHINAT C. Food Res. Int., 2018, 113:131-139.

    18. [18]

      MAN K Y, CHAN C O, TANG H H, DONG N P, CAPOZZI F, WONG K H, KWOK K W H, CHAN H M, MOK D K W. Food Chem., 2021, 338:127847.

    19. [19]

      LIU H Y, GUO X Q, ZHAO Q Y, QIN Y C, ZHANG J M. Food Chem., 2020, 309:125765.

    20. [20]

      DA COSTA E, RICARDO F, MELO T, MAMEDE R, ABREU M H, DOMINGUES P, DOMINGUES M R, CALADO R. Biomolecules, 2020, 10(3):489.

    21. [21]

      BENKTANDER J, VENKATAKRISHNAN V, PADRA J T, SUNDH H, SUNDELL K, MURUGAN A V M, MAYNARD B, LINDEN S. Mol. Cell. Proteomics, 2019, 18(6):1183-1196.

    22. [22]

      WU N, CHEN S G, YE X Q, LI G Y, YIN L A, XUE C H. J. Ocean Univ. China, 2014, 13(5):871-876.

    23. [23]

      BÖHME K, CALO-MATA P, BARROS-VELáZQUEZ J, ORTEA I. TrAC-Trends Anal. Chem., 2019, 110: 221-232.

    24. [24]

      SERVICE R F. Science, 2000, 287(5461):2136-2138

    25. [25]

      JIANG B X, HU L P, ZHANG X M, ZHANG H W, ZHANG F, CHEN L P, LI Z J, ZHAO X, XUE C H, JIANG X M. Food Chem., 2021, 344:128575.

    26. [26]

      SHA X M, WANG G Y, LI X, ZHANG L Z, TU Z C. Food Hydrocolloids, 2020, 101:105476.

    27. [27]

      ZHU X C, CHEN Y P, SUBRAMANIAN R. Anal. Chem., 2014, 86(2):1202-1209.

    28. [28]

      CHEN M X, ZHANG Y J, FERNIE A R, LIU Y G, ZHU F Y. Trends Biotechnol., 2021, 39(5):433-437.

    29. [29]

      LIN Q F, TAN H T, CHUNG M C M. Mass Spectrometry of Proteins. Methods Mol. Biol. New York:Humana Press, 2019, 1977:3-15.

    30. [30]

      WISNIEWSKI J R, ZOUGMAN A, NAGARAJ N, MANN M. Nat Methods, 2009, 6(5):359-360.

    31. [31]

      ZHANG H W, ZHANG X M, ZHAO X, XU J, LIN C, JING P, HU L P, ZHAO S, WANG X S, LI B F. Food Chem., 2019, 274:592-602.

    32. [32]

      TRIBA M N, LE MOYEC L, AMATHIEU R, GOOSSENS C, BOUCHEMAL N, NAHON P, RUTLEDGE D N, SAVARIN P. Mol. BioSyst., 2015, 11(1):13-19.

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    6. [6]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    7. [7]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    8. [8]

      Jiantao Zai Hongjin Chen Xiao Wei Li Zhang Li Ma Xuefeng Qian . The Learning-Centered Problem-Oriented Experimental Teaching. University Chemistry, 2024, 39(4): 40-47. doi: 10.3866/PKU.DXHX202309023

    9. [9]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    10. [10]

      Weitai Wu Laiying Zhang Yuan Chun Liang Qiao Bin Ren . Course Design of Chemical Measurement Experiments in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 64-68. doi: 10.12461/PKU.DXHX202409031

    11. [11]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    12. [12]

      Laiying Zhang Weitai Wu Yiru Wang Shunliu Deng Zhaobin Chen Jiajia Chen Bin Ren . Practices for Improving the Course of Chemical Measurement Experiments in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 107-112. doi: 10.12461/PKU.DXHX202409032

    13. [13]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    14. [14]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    15. [15]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    16. [16]

      Yan Su Xiuyun Wang Huimin Guo Yanjuan Zhang Xinwen Zhang Yunting Shang Wenfeng Jiang . To Cultivate Scientific Literacy by Learning, Thinking, Practicing and Understanding, To Utilize the “Smart Eye” Expertise by Integrating of Knowledge and Action: Ideological and Political Construction of Analytical Chemistry Experiment Course. University Chemistry, 2024, 39(2): 196-202. doi: 10.3866/PKU.DXHX202308003

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    19. [19]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

Metrics
  • PDF Downloads(9)
  • Abstract views(445)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return