Citation: DAI Jia-Wei,  WANG Hai-Peng,  CHEN Pu,  CHU Xiao-Li. Progress and Application of Multi-Spectral Data Fusion Methods[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 839-849. doi: 10.19756/j.issn.0253-3820.210833 shu

Progress and Application of Multi-Spectral Data Fusion Methods

  • Corresponding author: CHU Xiao-Li, chuxl.ripp@sinopec.com
  • Received Date: 11 November 2021
    Revised Date: 21 March 2022

  • Modern spectral technology has developed rapidly, which can directly carry out rapid and nondestructive analysis of liquids and solids. Different types of spectra have different analysis emphases. To achieve more comprehensive and accurate analysis, it needs to be combined with a variety of analysis methods. Multispectral data fusion technology is to optimize and integrate different types of spectra to realize the complementary advantages of single spectrum, so as to obtain more comprehensive, more reliable and richer characteristic data and improve the accuracy and stability of model prediction. This paper introduces the fusion strategies of low, medium and high levels data fusion by fusion structure, respectively, evaluates the advantages and disadvantages of each fusion strategy,summarizes the new strategies and methods of multispectral data fusion technology in recent years, and focuses on the research and application progress of this technology, The fusion strategies and methods of different spectral technologies in different fields are listed in this paper, and the application prospects of multispectral data fusion technology are discussed.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      OZAKI Y, HUCK C, TSUCHIKAWA S, ENGELSEN S B. Near-Infrared Spectroscopy Theory, Spectral Analysis, Instrumentation, and Applications:Theory, Spectral Analysis, Instrumentation, and Applications, 2020.

    4. [4]

      LUSSIER F, THIBAULT V, CHARRON B, WALLACE G Q, MASSON J F. TrAC-Trends Anal. Chem., 2020, 124:115796.

    5. [5]

    6. [6]

    7. [7]

      CARNEIRO C R, SILVA C S, DE CARVALHO M A, PIMENTEL M F, TALHAVINI M, WEBER I T. J. Anal.Chem., 2019, 91(19):12444-12452.

    8. [8]

      AZCARATE S M, RíOS-REINA R, AMIGO J M, GOICOECHEA H C. TrAC-Trends Anal. Chem., 2021, 143:116355.

    9. [9]

      COCCHI M. Data Handl. Sci. Technol., 2019:1-26.

    10. [10]

      MOROS J, JAVIER LASERNA J. Talanta, 2015, 134:627-639.

    11. [11]

      MALECHAUX A, GARCIA R, LE DREAU Y, PIRES A, DUPUY N, CABRITA M J. J. Agric. Food Chem., 2021, 69(14):4177-4190.

    12. [12]

      BORRAS E, FERRE J, BOQUE R, MESTRES M, ACENA L, BUSTO O. Anal. Chim. Acta, 2015, 891:1-14.

    13. [13]

      LI Y, HUANG Y, XIA J J, XIONG Y M, MIN S G. Vib. Spectrosc., 2020, 108:103060.

    14. [14]

      ROUSSEL S, BELLON-MAUREL V, ROGER J M, GRENIER P. Chemom. Intell. Lab. Syst., 2003, 65(2):209-219.

    15. [15]

      SANAEIFAR A, LI X L, HE Y, HUANG Z X, ZHAN Z H. Biosyst. Eng., 2021, 210:206-222.

    16. [16]

    17. [17]

      CHEN Y S, LI C Y, GHAMISI P, JIA X P, GU Y F. J. IEEE Geosci. Remote Sens. Lett., 2017, 14(8):1253-1257.

    18. [18]

      LI Y, WANG Y Z. Microchem. J., 2018, 140:38-46.

    19. [19]

      MORO M K, NETOÁC, LACERDA V, ROMÃO W, CHINELATTO L S, CASTRO E V R, FILGUEIRAS P R.Fuel, 2020, 263:116721.

    20. [20]

      NUNES K M, ANDRADE M V O, SANTOS FILHO A M P, LASMAR M C, SENA M M. Food Chem., 2016, 205:14-22.

    21. [21]

      YANG X H, LI Y P, WANG L, LI L Q, GUO L, YANG M X, HUANG F R, ZHAO H X. J. Optik, 2020, 203:164052.

    22. [22]

      RÍOS-REINA R, AZCARATE S M, CAMINA J M, GOICOECHEA H C. Anal. Chim. Acta, 2020, 1126:52-62.

    23. [23]

      MALECHAUX A, LE DREAU Y, ARTAUD J, DUPUY N. Talanta, 2020, 217:121115.

    24. [24]

      OSHOKOYA O O, JI J R D. ACS Symp. Ser., 2015:299-310.

    25. [25]

      LI Q, HUANG Y, ZHANG J, MIN S. Spectrochim. Acta, Part A, 2021, 247:119119.

    26. [26]

    27. [27]

    28. [28]

      DEARING T I, THOMPSON W J, RECHSTEINER C E, MARQUARDT B J. Appl. Spectrosc., 2011, 65(2):181-186.

    29. [29]

      HAHN D W, OMENETTO N. Appl. Spectrosc., 2012, 66(4):347-419.

    30. [30]

    31. [31]

      GAMELA R R, COSTA V C, SPERANCA M A, PEREIRA-FILHO E R. Food Res. Int., 2020, 132:109037.

    32. [32]

      ANDRADE D F, DE ALMEIDA E, DE CARVALHO H W P, PEREIRA-FILHO E R, ARASIRIWARDENA D.Talanta, 2021, 225:122025.

    33. [33]

      MOROS J, LASERNA J J. Anal. Chem., 2011, 83(16):6275-6285.

    34. [34]

      DE OLIVEIRA D M, FONTES L M, PASQUINI C. Anal. Chim. Acta, 2019, 1062:28-36.

    35. [35]

      YAO S, QIN H, WANG Q, LU Z, YAO X, YU Z, CHEN X, ZHANG L, LU J. Spectrochim. Acta, Part A, 2020, 239:118492.

    36. [36]

      GIBBONS E, LÉVEILLÉR, BERLO K. Spectrochim. Acta, Part B, 2020, 170:105905.

    37. [37]

      HOHMANN M, MONAKHOVA Y, ERICH S, CHRISTOPH N, WACHTER H, HOLZGRABE U. J. Agric. Food Chem., 2015, 63(43):9666-9675.

    38. [38]

    39. [39]

      WOLD S, SJÖSTRÖM M, ERIKSSON L. Chemom. Intell. Lab. Syst., 2001, 58(2):109-130.

    40. [40]

      LIANG J, LI M G, DU Y, YAN C H, ZHANG Y, ZHANG T L, ZHENG X H, LI H. Chemom. Intell. Lab. Syst., 2020, 207:104179.

    41. [41]

      ZHAO M, MARKIEWICZ-KESZYCKA M, BEATTIE R J, CASADO-GAVALDA M P, CAMA-MONCUNILL X, O'DONNELL C P, CULLEN P J, SULLIVAN C. Food Chem., 2020, 320:126639.

    42. [42]

      GODINHO M S, BLANCO M R, GAMBARRA NETO F F, LIÃO L M, SENA M M, TAULER R, DE OLIVEIRA A E. Talanta, 2014, 129:143-149.

    43. [43]

    44. [44]

    45. [45]

    46. [46]

      AHMMED F, FULLER I D, KILLEEN D P, FRASER-MILLER S J, GORDON K C. Cienc. Tecnol. Aliment.(Campinas, Braz.), 2021, 1(4):570-578.

    47. [47]

    48. [48]

    49. [49]

      WANG Y Q, YANG Y Z, SUN H J, DAI J P, ZHAO M X, TENG C Z, KE Z H, YANG M, ZHONG L Y, ZHU W F.Vib. Spectrosc., 2020, 108:103057.

    50. [50]

      LIU H, CHEN Y, SHI C, YANG X T, HAN D H. LWT-Food Sci. Technol., 2020, 119:108906.

    51. [51]

      YAO S, LI T, LI J Q, LIU H G, WANG Y Z. Spectrochim. Acta, Part A, 2018, 198:257-263.

    52. [52]

      GE W Z, ZHANG L, LI X L, ZHANG C S, SUN M Y, AN D, WU J W. Biosyst. Eng., 2021, 210:299-309.

    53. [53]

      RIOS-REINA R, CALLEJON R M, SAVORANI F, AMIGO J M, COCCHI M. Talanta, 2019, 198:560-572.

    54. [54]

      MARINI F, TOMASSETTI M, PIACENTINI M, CAMPANELLA L, FLAMINI P. Nat. Prod. Res., 2019, 33(7):1006-1014.

    55. [55]

      COMINO F, AYORA-CANADA M J, ARANDA V, DIAZ A, DOMINGUEZ-VIDAL A. Talanta, 2018, 188:676-684.

    56. [56]

      ASSIS C, GAMA E M, NASCENTES C C, DE OLIVEIRA L S, ANZANELLO M J, SENA M M. Food Chem., 2020, 325:126953.

    57. [57]

    58. [58]

    59. [59]

    60. [60]

      CASIAN T, FARKAS A, ILYES K, DEMUTH B, BORBAS E, MADARASZ L, RAPI Z, FARKAS B, BALOGH A, DOMOKOS A, MAROSI G, TOMUTA I, NAGY Z K. Int. J. Pharm.(Amsterdam, Neth.), 2019, 567:118473.

    61. [61]

    62. [62]

      SHI Y, YUAN H C, XIONG C A, ZHANG Q, JIA S Y, LIU J J, MEN H. Sens. Actuators, B, 2021, 333:129546.

    63. [63]

    64. [64]

    65. [65]

    66. [66]

      TENG G E, WANG Q Q, CUI X T, WEI K, XIANGLI W T, CHEN G Y. J. Raman Spectrosc., 2021, 52(4):805-814.

    67. [67]

      BALLABIO D, ROBOTTI E, GRISONI F, QUASSO F, BOBBA M, VERCELLI S, GOSETTI F, CALABRESE G, SANGIORGI E, ORLANDI M, MARENGO E. Food Chem., 2018, 266:79-89.

    68. [68]

      DI ANIBAL C V, CALLAO M P, RUISANCHEZ I. Talanta, 2011, 84(3):829-833.

    69. [69]

      ZHU J Y, FAN X, HAN L, ZHANG C, WANG J H, PAN L Q, TU K, PENG J, ZHANG M Z. J. Food Compos.Anal., 2021, 104:104130.

    70. [70]

      MARQUEZ C, LOPEZ M I, RUISANCHEZ I, CALLAO M P. Talanta, 2016, 161:80-86.

    71. [71]

      SHEN T, YU H, WANG Y Z. Molecules, 2020, 25(6):1442.

    72. [72]

      JURADO-CAMPOS N, ARROYO-MANZANARES N, VINAS P, ARCE L. Talanta, 2020, 219:121260.

    73. [73]

      LEGNER R, VOIGT M, WIRTZ A, FRIESEN A, HAEFNER S, JAEGER M. Energy Fuels, 2020, 34(1):103-110.

    74. [74]

      TAO L Y, VIA B, WU Y J, XIAO W, LIU X S. Vib. Spectrosc., 2019, 102:31-38.

    75. [75]

      MAZEROLLES G, HANAFI M, DUFOUR E, BERTRAND D, QANNARI E M. Chemom. Intell. Lab. Syst., 2006, 81(1):41-49.

    76. [76]

      CORDELLA C B Y, BERTRAND D. TrAC-Trends Anal. Chem., 2014, 54:75-82.

    77. [77]

      EL GHAZIRI A, CARIOU V, RUTLEDGE D N, QANNARI El M. J. Chemom., 2016, 30(8):420-429.

    78. [78]

      MAGE I, MEVIK B H, NAES T. J. Chemom., 2008, 22(8):443-456.

    79. [79]

      NAES T, TOMIC O, AFSETH N K, SEGTNAN V, MAGE I. Chemom. Intell. Lab. Syst., 2013, 124:32-42.

    80. [80]

      MAGE I, MENICHELLI E, NAES T. Food Qual. Prefer., 2012, 24(1):8-16.

    81. [81]

      BIANCOLILLO A, MARINI F, RUCKEBUSCH C, VITALE R. Appl. Sci., 2020, 10(18):6544.

    82. [82]

      MISHRA P, ROGER J M, RUTLEDGE D N, BIANCOLILLO A, MARINI F, NORDON A, JOUAN-RIMBAUDBOUVERESSE D. Chemom. Intell. Lab. Syst., 2020, 205:104139.

    83. [83]

      DE AGUIAR L M, GALVAN D, BONA E, COLNAGO L A, KILLNER M H M. Talanta, 2022, 236:122838.

  • 加载中
    1. [1]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    10. [10]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    11. [11]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    14. [14]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(75)
  • Abstract views(1470)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return