Citation:
CAI Dong-Ming, OUYANG Jie, DING Jin-Jian, LIN Min, ZHANG Wei-Wei, LI Min-Jie, GUO Liang-Hong. Research Progress on Identification and Toxic Effects of Antibiotics Disinfection By-products[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(3): 327-340.
doi:
10.19756/j.issn.0253-3820.210811
-
Due to extensive use and persistent discharge, the environmental levels of antibiotics have been increasing over time. The concentrations of some antibiotics in surface water have reached 300 ng/L, while those in drinking water sources have exceeded 200 ng/L. During disinfection process of drinking water, the antibiotics react with the disinfectants to produce a variety of by-products, some of which are carcinogenic or acutely toxic. These antibiotic disinfection by-products (DBPs) pose direct threat to human health, and thus become the frontier research topic in environmental health science. Based on the studies mostly published in the recent years, this review summarized the analytical methods of DBPs from five major categories of antibiotics (Chloramphenicols, sulfanilamides, fluoroquinolones, tetracyclines, macrolides) including sample pretreatment, chromatography separation and spectroscopic and mass spectrometry detection. Identified DBPs under specific disinfection conditions were then described according to the category of the antibiotics. Furthermore, common toxicity test methods including luminescent bacteria inhibition were introduced, and the test results of some antibiotic DBPs were described. A variety of antibiotic DBPs were identified in previous studies, and some of them were shown to be more toxic than their precursors and thus deserved further investigation.
-
-
-
[1]
https://www.chyxx.com/industry/202107/961106.html.
-
[2]
VAN BOECKELA T P, BROWERB C, GILBERT M, GRENFELL B T, LEVIN S A, ROBINSON T P, TEILLANT A, LAXMINARAYAN R. Proc. Natl. Acad. Sci. U.S.A., 2015, 112(18):5649-5654.
-
[3]
KUMMERER K, HENNINGER A. Clin. Microbiol. Infect., 2003, 9(12):1203-1214.
-
[4]
ZHOU L J, YING G G, LIU S, ZHANG R Q, LAI H J, CHEN Z F, PAN C G. Sci. Total Environ., 2013, 444:183-195.
-
[5]
-
[6]
-
[7]
-
[8]
DING S K, CHU W H. Trends Environ. Anal. Chem., 2017, 14:19-27.
-
[9]
CHU W H, KRASNER S W, GAO N Y, TEMPLETON M R, YIN D Q. Environ. Sci. Technol., 2016, 50(1):388-396.
-
[10]
GAFFNEY V D, CARDOSO V V, BENOLIEL M J, ALMEIDA C M M. J. Environ. Manage., 2016, 166:466-477.
-
[11]
El NAJJAR N H, DEBORDE M, JOURNEL R, LEITNER N K V. Water Res., 2013, 47(1):121-129.
-
[12]
LEAVEY-ROBACK S L, KRASNER S W, SUFFET I H. Chemosphere, 2016, 164:330-338.
-
[13]
ZHANG Y Y, PAN Z H, RONG C, SHAO Y A, WANG Y H, YU K F. Sep. Purif. Technol., 2019, 212:528-535.
-
[14]
SHEN R Q, ANDREWS S A. Water Res., 2011, 45(2):944-952.
-
[15]
DONG H Y, QIANG Z M, HU J, QU J H. Water Res., 2017, 121:178-185.
-
[16]
-
[17]
YE Z X, SHAO K L, HUANG H, YANG X. Chemosphere, 2021, 270:128628.
-
[18]
LI S, MA J P, WU G G, LI J H, WANG X Y, CHEN L X. J. Hazard. Mater., 2021, 424:127687.
-
[19]
ZHANG Y M, CHU W H, XU T, YIN D Q, XU B, LI P, AN N. Chem. Eng. J., 2017, 317:112-118.
-
[20]
CHU W H, CHU T F, BOND T, DU E D, GUO Y Q, GAO N Y. Water Res., 2016, 93:48-55.
-
[21]
WANG M, HELBLING D E. Water Res., 2016, 102:241-251.
-
[22]
KHANA M H, BAEA H, JUNG J Y. J. Hazard. Mater., 2010, 181(1-3):659-665.
-
[23]
LI C, LUO F, DUAN H J, DONG F L, CHEN X Y, FENG M B, ZHANG Z R, CIZMAS L, SHARMA V K. Sep. Purif. Technol., 2019, 211:564-570.
-
[24]
RODAYAN A, ROY R, YARGEAU V. J. Hazard. Mater., 2010, 177(1-3):237-243.
-
[25]
WANG H L, SHI W Y, MA D F, SHANG Y A, WANG Y, GAO B Y. Chem. Eng. J., 2020, 392:123701.
-
[26]
-
[27]
DE WITTE B, VAN LANGENHOVE H, HEMELSOET K, DEMEESTERE K, DE WISPELAERE P, VAN SPEYBROECK V, DEWULF J. Chemosphere, 2009, 76(5):683-689.
-
[28]
DEWITTE B, DEWULF J, DEMEESTERE K, DE VYVEREN V V, DE WISPELAERE P, VAN LANGENHOVE H. Environ. Sci. Technol., 2008, 42(13):4889-4895.
-
[29]
ZHOU S Q, SHAO Y S, GAO N Y, ZHU S M, MA Y, DENG J. Ecotoxicol. Environ. Saf., 2014, 107:33-35.
-
[30]
SHAO K L, YE Z X, HUANGA H, YANG X. Water Res., 2020, 186:116313.
-
[31]
JAEN-GIL A, FARRE M J, SÁNCHEZ-MELSIÓ A, SERRA-COMPTE A, BARCELÓ D, RODRÍGUEZ-MOZAZ S. Environ. Sci. Technol., 2020, 54(14):9062-9073.
-
[32]
LUIZ D B, GENENA A K, VIRMOND E, JOSE H J, MOREIRA R F P M, GEBHARDT W, SCHRÖDER H F. Water Environ. Res., 2010, 82(9):797-805.
-
[33]
YANG Y J, SHI J C, YANG Y, YIN J, ZHANG J, SHAO B. J. Environ. Sci., 2019, 76:48-56.
-
[34]
WANG G Q, SHI W Y, MA D F, GAO B Y. Sci. Total Environ., 2020, 731:138755.
-
[35]
MIYASHIRO T, RUBY E G. Mol. Microbiol., 2012, 84(5):795-806.
-
[36]
ABBASA M, ADIL M, EHTISHAM-UL-HAQUE S, MUNIR B, YAMMEN M, GHAFFAR A, SHAR G A, TAHIR M A, IQBAL M. Sci. Total Environ., 2018, 626:1295-1309.
-
[37]
ZHANG T Q, HE G L, DONG F L, ZHANG Q Z, HUANG Y. Sci. Total Environ., 2019, 676:31-39.
-
[38]
MÉDICE R M, AFONSO R G D F, ALMEIDA M L B, DE AQUINO S F, LIBÂNIO M. Environ. Sci. Pollut. Res., 2020, 28(4):3828-3836.
-
[39]
MOE B, GABOS S, LI X F. Anal. Chim. Acta, 2013, 789:83-90.
-
[40]
FENG Y X, GUO Q Z, SHAO B. Ecotoxicol. Environ. Saf., 2019, 182:109415.
-
[41]
ABELLÁN M N, GEBHARDT W, SCHRÖDER H F. Water Sci. Technol., 2008, 58(9):1803-1812.
-
[42]
CHEN B Y, ZHANG T, BOND T, GAN Y Q. J. Hazard. Mater., 2015, 299:260-279.
-
[43]
GUO Q Z, DU Z X, SHAO B. J. Hazard. Mater., 2018, 359:31-39.
-
[44]
FU W J, LI B, YANG J Q, YI H B, CHAI L Y, LI X Y. Chem. Eng. J., 2018, 331:785-793.
-
[45]
LI M, WEI D B, DU Y G. J. Environ. Sci., 2014, 26(9):1837-1842.
-
[46]
HE G L, ZHANG T Q, ZHENG F F, LI C, ZHANG Q Z, DONG F L, HUANG Y. Chem. Eng. J., 2019, 374:1191-1203.
-
[47]
YIN K, DENG L, LUO J M, CRITTENDEN J, LIU C B, WEI Y F, WANG L L. Chem. Eng. J., 2018, 351:867-877.
-
[48]
CAI A H, DENG J, XU M Y, ZHU T X, ZHOU S Q, LI J, WANG G F, LI X Y. Chem. Eng. J., 2020, 395:125090.
-
[49]
DONG H Y, CUTHBERTSON A A, RICHARDSON S D. Environ. Sci. Technol., 2020, 54(3):1290-1292.
-
[1]
-
-
-
[1]
Jijun Sun , Qianlang Wang , Qian Chen , Quanqin Zhao , Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206
-
[2]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[3]
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
-
[4]
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
-
[5]
Chengyi Xiao , Xiaoli Sun , Chen Zhang , Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[8]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[9]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[10]
Feng Liang , Desheng Li , Yuting Jiang , Jiaxin Dong , Dongcheng Liu , Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009
-
[11]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[12]
Sifang Zhang , Yanli Tan , Yu Tao , Jiaoyan Zhao , Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067
-
[13]
Yuyang Xu , Ruying Yang , Yanzhe Zhang , Yandong Liu , Keyi Li , Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064
-
[14]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[15]
Xingyuan Lu , Yutao Yao , Junjing Gu , Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074
-
[16]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[17]
Qilong Fang , Yiqi Li , Jiangyihui Sheng , Quan Yuan , Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004
-
[18]
Jingfeng Lan , Li Wu , Guangnong Lu , Liu Yang , Xiaolong Li , Xiangyang Xu , Yongwen Shen , E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130
-
[19]
Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073
-
[20]
Yang Chen , Peng Chen , Yuyang Song , Yuxue Jin , Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077
-
[1]
Metrics
- PDF Downloads(18)
- Abstract views(1126)
- HTML views(331)