Citation: CAO Cheng-Cheng,  LIN Xiang-Fang,  REN Chen-Yu,  SU Lei. Polyadenine-capped Gold Nanoclusters Incorporated into Zeolitic Imidazolate Framework-8 with Aggregation-induced Fluorescence Emission Enhancement for High-Sensitivity Fluorescence Detection of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(6): 932-939. doi: 10.19756/j.issn.0253-3820.210807 shu

Polyadenine-capped Gold Nanoclusters Incorporated into Zeolitic Imidazolate Framework-8 with Aggregation-induced Fluorescence Emission Enhancement for High-Sensitivity Fluorescence Detection of Ascorbic Acid

  • Corresponding author: SU Lei, sulei@szu.edu.cn
  • Received Date: 24 October 2021
    Revised Date: 30 March 2022

  • Nano metal organic frameworks(NMOFs) have been widely used in biological diagnosis and treatment systems. In this work, a fluorescence analysis method based on gold nanoclusters(AuNCs) and metal organic framework zeolitic imidazolate framework-8(ZIF-8) composite materials was established for high-sensitivity detection of ascorbic acid(AA). The obtained nanocomposite material(AuNCs@ZIF-8) through the confinement effect of MOF(ZIF-8) showed aggregation-induced emission(AIE) enhancement.When AA was combined with ZIF-8, the framework of the composite material was destroyed, and the fluorescence intensity was greatly reduced due to the transition of AuNCs from the aggregate state to the dispersed state. The linear range of AA detection was measured to be 10-100 μmol/L, and the limit of detection(LOD, S/N=3) was 0.3 μmol/L This method could complete the detection of AA within 2 minutes,showing high selectivity for AA detection. This method was used to detect AA in human serum with good results, and the recoveries were 95.7%-100.9%.
  • 加载中
    1. [1]

      SONGTHAM R, PATTRAPORN S, CHUTIMA P, AMORNRAT K, THAWATCHAI T. Chem. Select., 2021, 6(6):1248-1254.

    2. [2]

      XU Y L, NIU X Y, CHEN H L, ZHAO S G, CHEN X G. Chin. Chem. Lett., 2017, 28(2):338-344.

    3. [3]

      BI J R, WANG H T, KAMAL T, ZHU B W, TAN M Q. RSC Adv., 2017, 7(48):30481-30487.

    4. [4]

      LIMA D R S, COSSENZA M, GARCIA C G, PORTUGAL C C, MARQUES F F D C, PAESDECARVALHO R, NETTO A D P. Anal. Methods, 2016, 8(27):5441-5447.

    5. [5]

    6. [6]

      HUANG D Q, LI X, CHEN M M, CHEN F, WAN Z G, RUI R, WANG R, FAN S H, WU H. J. Electroanal. Chem., 2019, 841:101-106.

    7. [7]

    8. [8]

    9. [9]

      LIU H, NA W D, LIU Z P, CHEN X Q, SU X G. Biosens. Bioelectron., 2017, 92:229-233.

    10. [10]

      JALILI R, DASTBORHAN M, CHENAGHLOU S, KHATAEE A. J. Photochem. Photobiol., A, 2020, 391:112370.

    11. [11]

    12. [12]

      YAN X M, HE L, ZHOU C X, QIAN Z J, HONG P Z, SUN S L, LI C Y. Chem. Phys., 2019, 522:211-213.

    13. [13]

      LIU Q, LI J Y, LIU X, YUAN L, ZHAO L Z, CHANG Y T, LIU X G, PENG J J. Nanoscale, 2021, 13(32):13835-13844.

    14. [14]

      ZHOU Z P, SHU T, SUN Y F, SI H X, PENG P W, SU L, ZHANG X J. Biosens. Bioelectron., 2021, 192:113530.

    15. [15]

      ZHANG Z P, LI S, HUANG P C, FENG J Y, WU F Y. Microchim. Acta, 2019, 186(12):790-796.

    16. [16]

      LIU J X, FENG J, YU Y, XU L D, LIU Q, ZHANG H, SHEN J L, QI W. J. Phys. Chem. C, 2020, 124(43):23844-23851.

    17. [17]

      LI B Z, WANG X, SHEN X, ZHU W Y, XU L, ZHOU X M. J. Colloid Interface Sci., 2016, 467:90-96.

    18. [18]

      JALILI R, KHATAEE A. Microchim. Acta, 2018, 186(1):29-35.

    19. [19]

      HUANG Z Z, WANG M, GUO Z L, WANG H N, DONG H, YANG W S. ACS Omega, 2018, 3(10):12763-12769.

    20. [20]

      NADARS S, RATHOD V K. Enzyme Microb. Technol., 2018, 108:11-20.

    21. [21]

      SHU Y, YE Q Y, DAI T, XU Q, HU X Y. ACS Sens., 2021, 6(3):641-658.

    22. [22]

      YIN X, YANG B, CHEN B B, HE M, HU B. Anal. Chem., 2019, 91(16):10596-10603.

    23. [23]

      ZHANG L Y, GAO Y, SUN S J, LI Z H, WU A G, ZENG L Y. J. Mater. Chem. B, 2020, 8(8):1739-1747.

    24. [24]

      CUI Y J, SONG T, YU J C, YANG Y, WANG Z Y, QIAN G D. Adv. Funct. Mater., 2015, 25(30):4796-4802.

    25. [25]

      ZHANG Z J, NGUYEN H T H, MILLER S A, PLOSKONKA A M, DECOSTE J B, COHEN S M. J. Am. Chem.Soc., 2016, 138(3):920-926.

    26. [26]

      LIAN X Z, FANG Y, JOSEPH E, WANG Q, LI J L, BANERJEE S, LOLLAR C, WANG X, ZHOU H C. Chem.Soc. Rev., 2017, 46(11):3386-3401.

    27. [27]

      XIA M F, SUI Y C, GUO Y, ZHANG Y D. Analyst, 2021, 146:904-910.

    28. [28]

      CAO F F, JU E G, LIU C Q, LI W, ZHANG Y, DONG K, LIU Z, REN J S, QU X G. Nanoscale, 2017, 9(12):4128-4134.

    29. [29]

      JALILI R, IRANI-NEZHAD M H, KHATAEE A, JOO S W. Spectrochim. Acta, Part A, 2021, 262:120089.

    30. [30]

      WANG H B, LI Y, BAI H Y, LIU Y M. Sens. Actuators, B, 2017, 259:204-210.

    31. [31]

      CAO X Y, CHENG S S, YOU Y, ZHANG S M, XIAN Y Z. Anal. Chim. Acta, 2019, 1092:108-116.

    32. [32]

      HIKOSOU D, SAITA S, MIYATA S, MIYAJI H, FURUIKE T, TAMURA H, KAWASAKI H. J. Phys. Chem. C, 2018, 122(23):12494-12501.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    8. [8]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    9. [9]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    10. [10]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    17. [17]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    20. [20]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

Metrics
  • PDF Downloads(13)
  • Abstract views(708)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return