Citation: WEI Yun,  XIA Jing-Jing,  XU Wei-Xin,  CHEN Yue-Yao,  MAO Xin-Ran,  XIONG Yan-Mei,  MIN Shun-Geng. Quantitative Study on Prohibited Addition of Chlorfenapyr in Bacillus Thuringiensis Formulations by Infrared Spectroscopy[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 482-490. doi: 10.19756/j.issn.0253-3820.210794 shu

Quantitative Study on Prohibited Addition of Chlorfenapyr in Bacillus Thuringiensis Formulations by Infrared Spectroscopy

  • Corresponding author: XIONG Yan-Mei,  MIN Shun-Geng, 
  • Received Date: 15 October 2021
    Revised Date: 28 December 2021

  • A method for rapid determination of chlorfenapyr in Bacillus thuringiensis formulations with prohibited additions using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) combined with partial least squares (PLS) analysis was developed. Three Bacillus thuringiensis formulations from different sources were added with different masses of 97.00% (m/m) chlorfenapyr prodrug to prepare 153 mixed samples with chlorfenapyr concentrations ranging from 0.00% to 5.00%. Three pretreatment methods (Savitzky-Golay smoothing (S-G), standard normal variation (SNV) and multivariate scattering correction (MSC)) and five variable selection algorithms (interval partial least-squares (iPLS), moving window partial least-squares (MWPLS), elimination of uninformative variables (UVE), competitive adaptive reweighted sampling (CARS), and the bootstrapping soft shrinkage (BOSS)) were employed to investigate the effects of different pretreatment methods and variable selection methods on the model results. Among them, the MSC pretreatment method combined with the BOSS algorithm obtained the optimal model results, and with this method, RMSECV=0.0017, Rcv2=0.9859, RMSEP=0.0016, and Rpre2=0.9868. For samples with chlorfenapyr concentration ranging from 0.50% to 5.00%, the average relative error of external test sample prediction was 0.0540, and the variables selected by the BOSS algorithm were mainly concentrated in the absorption region of the characteristic peak of chlorfenapyr. This method not only had excellent modeling effect, but also showed good chemical interpretability, and could be applied to the rapid detection of chlorfenapyr in Bacillus thuringiensis formulations with prohibited additions.
  • 加载中
    1. [1]

      ZHAO Y, WANG Q, WANG Y, ZHANG Z, WEI Y, LIU F, ZHOU C, MU W. J. Agric. Food Chem., 2017,65(29):5908-5915.

    2. [2]

      GHANI S B A, ABDALLAH O I. Food Chem., 2016, 194:516-521.

    3. [3]

      ULLAH S, SHAH R M, SHAD S A. Pestic. Biochem. Physiol., 2016, 133:91-96.

    4. [4]

    5. [5]

      SANAHUJA G, BANAKAR R, TWYMAN R M, CAPELL T, CHRISTOU P. Plant Biotechnol. J., 2011, 9(3):283-300.

    6. [6]

      GHELARDI E, CELANDRONI F, SALVETTI S, FISCARELLI E, SENESI S. Microbes Infect., 2007, 9(5):591-598.

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

      GARLITO B, IBANEZ M, PORTOLES T, SERRANO R, AMLUND H, LUNDEBYE A K, SANDEN M, BERNTSSEN M H G, HERNANDEZ F. Anal. Bioanal. Chem., 2019, 411(27):7281-7291.

    12. [12]

      FENG C, XU Q, QIU X, JIN Y, JI J, LIN Y, LE S, WANG G, LU D. Food Chem., 2020, 320:126576.

    13. [13]

      DUTTA A, HINGMIRE S, BANERJEE K. J. AOAC Int., 2020, 103(6):1486-1497.

    14. [14]

      GOLGE O. Food Anal. Method., 2021, 14(7):1432-1437.

    15. [15]

    16. [16]

    17. [17]

    18. [18]

      ZIEGLER J U, LEITENBERGER M, LONGIN C, Friedrich H, WüRSCHUM T, CARLE R, SCHWEIGGERT R M. J. Food Compos. Anal., 2016, 51:30-36.

    19. [19]

      JOHNSON J B. J. Stored Prod. Res., 2020, 86:101558.

    20. [20]

      LI Q, XIE J, ZHANG J, YAN H, XIONG Y, LIU W, MIN S. Infrared Phys. Technol., 2020, 105:103191.

    21. [21]

      LI Q, HUANG Y, ZHANG J, MIN S. Spectrochim. Acta, Part A, 2021, 247:119119.

    22. [22]

      YAN H, SONG X, TIAN K, CHEN Y, XIONG Y, MIN S. Spectrochim. Acta, Part A, 2018, 191:296-302.

    23. [23]

    24. [24]

      LI Q, HUANG Y, SONG X, ZHANG J, MIN S. Pest Manag. Sci., 2019, 75(6):1743-1749.

    25. [25]

    26. [26]

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    8. [8]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    14. [14]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

Metrics
  • PDF Downloads(5)
  • Abstract views(746)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return