Citation: FU Xin,  ZOU Ting,  ZHANG He,  ZHANG Pei-Rou,  JIANG Xu-Chun. Ultrasensitive Colorimetric Sensor for Detection of Thrombin Based on Loop Mediated Isothermal Signal Amplification Triggered by Aptamer Sandwich-Mediated Enzymatic Digestion[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1022-1031. doi: 10.19756/j.issn.0253-3820.210793 shu

Ultrasensitive Colorimetric Sensor for Detection of Thrombin Based on Loop Mediated Isothermal Signal Amplification Triggered by Aptamer Sandwich-Mediated Enzymatic Digestion

  • Corresponding author: ZHANG He, mzhang_he@126.com
  • Received Date: 14 October 2021
    Revised Date: 20 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21005067) and the Natural Science Foundation of Hunan Province, China (No.2019JJ40055).

  • An ultrasensitive colorimetric sensor for detection of thrombin was designed based on loop mediated isothermal signal amplification (LAMP) triggered by aptamer sandwich-mediated enzymatic digestion. In the presence of thrombin, aptamer capable of recognizing thrombin heparin site and fibrinogen site was used to recognize thrombin and construct a sandwich structure. The Nb.BsrDI nicking endonuclease could recognize and cleave this complementary sequence to start-up loop mediated isothermal amplification. G-quadruplex-hemin DNAzyme could catalyze the oxidation of ABTS to ABTS·+ in the presence of H2O2, and the color changed to green. Under the optimal experimental conditions, the linear detection range of this method for thrombin was 0.01-1.0 ag/mL, the detection limit (3σ) was 0.008 ag/mL, and the regression equation was ΔA420 nm=0.187Cthrombin+0.171 (R2=0.991). When there were a large number of other interfering proteins in the serum sample, the sensor still had a high selectivity to thrombin. When this method was applied to the detection of thrombin content in serum samples, the recoveries were 96.1%-103.2%. This method innovatively integrated aptamer-based sandwich assay, loop-mediated isothermal amplification technology, and G-quadruplex-hemin DNAzyme enzymatic signal amplification technology that caused the ultrasensitive detection of thrombin. The method showed many advantages such as lower cost, simple operation and good stability, and could be used for highly sensitive clinical detection of thrombin in human serum.
  • 加载中
    1. [1]

      PEACOCK R B, MCGRANN T, TONELLI M, KOMIVES E A. Sci. Rep., 2021, 11(1):9354.

    2. [2]

    3. [3]

      SAPSFORD K E, BERTI L, MEDINTZ I L. Angew. Chem., Int. Ed., 2006, 45(28):4562-4589.

    4. [4]

      HERNANDEZ-RODRIGUEZ N A, CAMBREY A D, CHAMBERS R C, GRAY A J, MCANULTY R J, LAURENT G J, HARRISON N K, SOUTHCOTT A M, DUBOIS R M, BLACK C M. Lancet, 1995, 346(8982):1071-1073.

    5. [5]

      KITAMOTO Y, IMAMURA T, FUKUI H, TOMITA K. Kidney Int., 1998, 54:1767-1768.

    6. [6]

      NIU S, QU L, ZHANG Q, LIN J. Anal. Biochem., 2012, 421(2):362-367.

    7. [7]

      MANN K G. J. Thromb. Haemost., 2006, 4(1):58-59.

    8. [8]

      RAND M D, LOCK J B, VAN'T VEER C, GAFFNEY D P, MANN K G. Blood, 1996, 88(9):3432-3445.

    9. [9]

      OBUBUAFO A, BALAMURUGAN S, SHADPOUR H, SPIVAK D, MCCARLEY R L, SOPER S A. Electrophoresis, 2008, 29(16):3436-3445.

    10. [10]

      CHOI J H, CHEN K H, STRANO M S. J. Am. Chem. Soc., 2006, 128(49):15584-15585.

    11. [11]

    12. [12]

      XU H, CUI H, YIN Z, WEI G, LIAO F, SHU Q, MA G, CHENG L, HONG N, XIONG J, FAN H. Bioelectrochemistry, 2020, 134:107522.

    13. [13]

      CHENG L, XU C, CUI H, LIAO F, HONG N, MA G, XIONG J, FAN H. Anal. Chim. Acta, 2020, 1111:1-7.

    14. [14]

      GUO W J, YANG X Y, WU Z, ZHANG Z L. J. Mater. Chem. B, 2020, 8(16):3574-3581.

    15. [15]

      ZHAO Q, LU X, YUAN C G, LI X F, LE X C. Anal. Chem., 2009, 81(17):7484-7489.

    16. [16]

    17. [17]

      SUN Y, ZHU X, LIU H, DAI Y, HAN R, GAO D, LUO C, WANG X, WEI Q. ACS Appl. Mater. Interfaces, 2020, 12(5):5569-5577.

    18. [18]

      YU N, WU J. Biosens. Bioelectron., 2019, 146:111726.

    19. [19]

      LI X, WU Y, NIU J, JIANG D, XIAO D, ZHOU C. J. Mater. Chem. A, 2019, 7(34):5161-5169.

    20. [20]

      LIU Y Z, JIANG X K, CAO W F, SUN J Y, GAO F. Sensors-Basel, 2018, 18(12):4289.

    21. [21]

      ZHAO Q, GAO J. Biosens. Bioelectron., 2015, 63:21-25.

    22. [22]

      BEZUNEH T T, FEREJA T H, ADDISU K S, LI H J, JIN Y D. Microchem. J., 2021, 160:105649.

    23. [23]

      LIN X, CHEN Q, LIU W, LI H, LIN J M. Biosens. Bioelectron., 2014, 56:71-76.

    24. [24]

      YIGIT M V, MAZUMDAR D, LU Y. Bioconjugate Chem., 2008, 19(2):412-417.

    25. [25]

      KIM K S, LEE H S, YANG J A, JO M H, HAHN S K. Nanotechnology, 2009, 20(23):235501.

    26. [26]

      WALKER G T, FRAISER M S, SCHRAM J L, LITTLE M C, NADEAU J G, MALINOWSKI D P. Nucleic Acids Res., 1992, 20(7):1691-1696.

    27. [27]

      LIZARDI P M, HUANG X H, ZHU Z R, BRAY-WARD P, THOMAS D C, WARD D C. Nat. Genet., 1998, 19(3):225-232.

    28. [28]

      NIMITPHAK T, KIATPATHOMCHAI W, FLEGEL T W. Nucleic Acids Res., 2000, 28(12):e63.

    29. [29]

      VINCENT M, XU Y, KONG H. EMBO Rep., 2004, 5(8):795-800.

    30. [30]

      LIN Q, XU P, LI J, YIN C, FENG J. Microb. Pathog., 2017, 109:183-188.

    31. [31]

      XUE T, MA Z, LIU F, DU W, AN C. BMC Pulm. Med., 2020, 20(1):70.

    32. [32]

      ULEP T H, DAY A S, SOSNOWSKI K, SHUMAKER A, YOON J Y. Sci. Rep., 2019, 9:9629.

    33. [33]

    34. [34]

      ZHOU W, GONG X, XIANG Y, YUAN R, CHAI Y. Biosens. Bioelectron., 2014, 55:220-224.

    35. [35]

    36. [36]

      LI Z, ZHAO J, WANG Z, DAI Z. Anal. Chim. Acta, 2018, 1008:90-95.

    37. [37]

      XU S Y, ZHU Z, ZHANG P, CHAN S H, SAMUELSON J C, XIAO J, INGALLS D, WILSON G G. Nucleic Acids Res., 2007, 35(14):4608-4618.

    38. [38]

      ZHANG H, HU X J, FU X. Biosens. Bioelectron., 2014, 57:22-29.

    39. [39]

    40. [40]

      ZHANG H, LEI Z X, FU X, DENG X C, WANG Q, GU D Y. Sens. Actuators, B, 2017, 246:896-903.

  • 加载中
    1. [1]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    2. [2]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    3. [3]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    13. [13]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    14. [14]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

Metrics
  • PDF Downloads(10)
  • Abstract views(734)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return