Citation: ZHONG Hui,  ZENG Qing-Li,  ZHANG Tian-Ci,  SHUANG Ya-Zhou,  LI Lai-Sheng. Preparation and Evaluation of a Pyridinediamide Bridged Bis(β-cyclodextrin) Chiral Stationary Phase[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(3): 433-444. doi: 10.19756/j.issn.0253-3820.210787 shu

Preparation and Evaluation of a Pyridinediamide Bridged Bis(β-cyclodextrin) Chiral Stationary Phase

  • Corresponding author: LI Lai-Sheng, lilaishengcn@163.com
  • Received Date: 12 October 2021
    Revised Date: 7 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.31860469, 21165012) and the Jiangxi Province Science Technology Innovation Platform Project (No.20192BCD40001).

  • Based on the dehydration condensation reaction between 2,3-pyridinedicarboxylic acid and 6-amino-β-cyclodextrin, a pyridinediamide bridged bis(β-cyclodextrin) was synthesized and then bonded onto silica gel to obtain a novel pyridinediamide bridged bis(β-cyclodextrin) chiral stationary phase (PyCDP). A total of 38 chiral drugs and pesticides including flavanones, triazoles, amino acids and β-blockers were used as chiral probes to systematically evaluate the chiral high performance liquid chromatography (HPLC) performance of the new stationary phase. Additionally, a common native cyclodextrin stationary phase (CDCSP) was also prepared by the similar method for comparsion purpose. The research results showed that the new bridged cyclodextrin stationary phase could resolve all 38 chiral analytes in both reversed-phase and polar organic modes. Among them, the enantiomeric resolution (Rs) of 2'-hydroxyflavanone, flutriafol, phenylalanine and esmolol were 2.36, 1.98, 1.86 and 1.62 within 30 min, respectively. In reversed-phase chromatographic mode, PyCDP could realize the baseline separations of triazole pesticides by adjusting the volume fraction of acetonitrile (20%-35%) in the mobile phase in the temperature range of 15-30℃, and could resolve triadimenol and bitertanol with two chiral centers into four peaks, respectively. PyCDP achieved the complete separations of easily ionized acidic, basic and polar amino acids in the pH range (5.0-6.5) of the mobile phases. In addition, PyCDP was also suitable for polar organic mode. For example, carvedilol (Rs=1.42) with larger steric hindrance could also be resolved, and it was the first time to realize the separation of bevanolol on cyclodextrin stationary phases. However, under the optimized conditions, CDCSP could only resolve 20 chiral substances with lower resolutions. Obviously, the synergistic inclusion of two adjacent cavities on bridged cyclodextrin and the hydrogen bond and π-π effect provided by pyridinediamide bridging group were conducive to chiral separations. PyCDP was a kind of multifunctional chiral separation materials.
  • 加载中
    1. [1]

      SHEN Q, WANG L, ZHOU H, JIANG H D, YU L S, ZENG S. Acta Pharmacol. Sin., 2013, 34(8):998-1006.

    2. [2]

      CALCATERRA A, D'ACQUARICA I. J. Pharmaceut. Biomed., 2018, 147:323-340.

    3. [3]

      CHEN F X, BAI Q X, WANG Q F, CHEN S Y, MA X X, CAI C L, WANG D N, WAQAS A, GONG P. Curr. Pharm. Biotechnol., 2020, 21(15):1632-1644.

    4. [4]

      TANG J, PANG L M, ZHOU J, ZHANG S P, TANG W H. Anal. Chim. Acta, 2016, 946:96-103.

    5. [5]

    6. [6]

      ZHAO B J, LI L, WANG Y T, ZHOU Z M. Chin. Chem. Lett., 2019, 30(3):643-649.

    7. [7]

      HERRERA B A, BRUNA T C, SIERPE R A, LANG E P, URZUA M, FLORES M I, JARA P S, YUTRONIC N I. Carbohydr. Polym., 2020, 233:115865.

    8. [8]

      SCRIBA G K E. J. Chromatogr. A, 2016, 1467:56-78.

    9. [9]

      ARMSTRONG D W, ALAK A, DEMOND W, HINZE W L, RIEHL T E. J. Liq. Chromatogr., 1985, 8(2):261-269.

    10. [10]

      PANG L M, ZHOU J, TANG J, NG S C, TANG W H. J. Chromatogr. A, 2014, 1363:119-127.

    11. [11]

      SUN P, WANG C, ARMSTRONG D W, PETER A, FORRO E. J. Liq. Chromatogr. Relat. Technol., 2006,29(13):1847-1860.

    12. [12]

      ZHOU J, YANG B, TANG J, TANG W H. New J. Chem., 2018, 42(5):3526-3533.

    13. [13]

      CHEN M, LU X L, MA X F, XIAO Y, WANG Y. Analyst, 2021, 146(9):3025-3033.

    14. [14]

      LAI X H, TANG W H, NG S C. J. Chromatogr. A, 2011, 1218(33):5597-5601.

    15. [15]

      BRESLOW R, GREENSPOON N, GUO T, ZARZYCKI R. J. Am. Chem. Soc., 1989, 111(21):8296-8297.

    16. [16]

      ZHAO Y, GU J, YANG Y C, ZHU H Y, HUANG R, JING B. J. Mol. Struct., 2009, 930(1-3):72-77.

    17. [17]

      CHEN G S, JIANG M. Chem. Soc. Rev., 2011, 40(5):2254-2266.

    18. [18]

      WILSON D, PERLSON L, BRESLOW R. Bioorg. Med. Chem., 2003, 11(12):2649-2653.

    19. [19]

      SUN M, ZHANG H Y, LIU B W, LIU Y. Macromolecules, 2013, 46(11):4268-4275.

    20. [20]

    21. [21]

    22. [22]

    23. [23]

      ZHONG Q Q, HE L F, BEESLEY T E, TRAHANOVSKY W S, SUN P, WANG C L, ARMSTRONG D W. J. Chromatogr. A, 2006, 1115(1-2):19-45.

    24. [24]

      ZHAO D Y, HUO Q S, FENG J L, CHMELKA B F, STUCKY G D. J. Am. Chem. Soc., 1998, 120(24):6024-6036.

    25. [25]

      SHUANG Y Z, LIAO Y Q, WANG H, WANGY X, LI L S. Chirality, 2020, 32(2):168-184.

    26. [26]

      NG S C, CHEN L, ZHANG L F, CHING C B. Tetrahedron Lett., 2002, 43(4):677-681.

    27. [27]

      FANALI C, FANALI S, CHANKVETADZE B. Chromatographia, 2016, 79(3-4):119-124.

    28. [28]

      MERINO M E D, ECHEVARRIA R N, LUBOMIRSKY E, PADRO J M, CASTELLS C B. Microchem. J., 2019, 149:103970.

    29. [29]

      CHANG Y X, BAI B, DU L M, JING X, LI C F, FU Y L. Asian J. Chem., 2013, 25(18):10067-10070.

    30. [30]

      YAO X B, TAN T T Y, WANG Y. J. Chromatogr. A, 2014, 1326:80-88.

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    3. [3]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    18. [18]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    19. [19]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    20. [20]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(7)
  • Abstract views(1106)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return