Citation: JIAO Ting,  WEN Hao-Xiang,  LI Zhong-Ping. Selective Detection of Doxorubicin Hydrochloride Based on Fluorescence Quenching of Copper Nanoclusters[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 235-243. doi: 10.19756/j.issn.0253-3820.210770 shu

Selective Detection of Doxorubicin Hydrochloride Based on Fluorescence Quenching of Copper Nanoclusters

  • Corresponding author: LI Zhong-Ping, zl104@sxu.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 3 December 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21575083), the Program for the Innovative Teams of Jinzhong University (No.jzxycxtd2019007) and the Hundred Talents Program of the Twelfth Batch Shanxi Province (No.128,129)

  • A kind of novel copper nanoclusters (PEI@CuNCs) with sizes of about 2.4 nm was prepared using polyethyleneimine (PEI) as stabilizer and ascorbic acid as reducing agent, which could be used as probe to detect doxorubicin hydrochloride (DOX). The prepared PEI@CuNCs showed good stability and resistance to photobleaching, and their maximal excitation and emission wavelengths were 430 and 518 nm, respectively. The surface functional groups of PEI@CuNCs were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. DOX could quench the fluorescence of PEI@CuNCs, on the basis of this, a fluorescence method for detection of DOX was established. Under the optimal conditions, in the DOX concentration range of 1-145 μmol/L, a good linear relationship between the concentration of DOX and F/F0 was observed, with a detection limit of 0.032 μmol/L (S/N=3). In the presence of other antibiotics, this method had high selectivity to DOX. The fluorescence quenching of PEI@CuNCs by DOX was attributed to internal filtration effect (IFE). This work showed great prospects for detecting DOX.
  • 加载中
    1. [1]

      XIONG M H, BAO Y, DU X J, TAN Z B, JIANG Q, WANG H X, ZHU Y H, WANG J. ACS Nano, 2013,7(12): 10636-10645.

    2. [2]

      PARASTOO M A, MOHAMMAD H, JAFAR S, JALIL V G, ABOLGHASEM J. Microchem. J., 2019, 145: 450-455.

    3. [3]

      KIM Y A, CHO H, LEE N, JUNG S Y, SIM S H, PARK I H, LEE S, LEE E S, KIMH J. Cancer Med., 2018, 7(12): 6084-6092.

    4. [4]

      WANG M F, LIN J, GONG J W, MA M C, TANG H L, LIU J Y, YAN F. RSC Adv., 2021, 11(15): 9021-9028.

    5. [5]

      ROBIN D F, JENNIFER J G, JULIE D, ROBERT D C. J. Chromatogr. B, 2007, 852(1-2): 545-553.

    6. [6]

      HU J, ZHAN S, WU X, HU S, WU S, LIU Y. RSC Adv., 2018, 8(38): 21505-21512.

    7. [7]

      XU Z F, DENG P H, LI J H, XU L, TANG S P. Mater. Sci. Eng. B, 2017, 218: 31-39.

    8. [8]

      YANG M, YAN Y, LIU E, HU X, HAO H, FAN J. Optical Mater., 2021, 112: 1-6.

    9. [9]

      SHU T, WANG J X, LI X Q, ZHANG X J, SU L. Curr. Nanosci., 2015, 11(6): 702-709.

    10. [10]

      WANG S, LIU P, QIN Y, CHEN Z, SHEN J. Sens. Actuators, B, 2016, 223: 178-185.

    11. [11]

      ZHANG B Z, WEI C Y. Anal. Bioanal. Chem., 2020, 412(11): 2529-2536.

    12. [12]

      ZHOU M M, JIN S, WEI X, YUAN Q Q, WANG S X, DU Y X, ZHU M Z. J. Phys. Chem. C, 2020,124(13): 7531-7538.

    13. [13]

      TAN N D, YIN J H, YUAN Y Q, MENG L, XU N. Bull. Korean Chem. Soc., 2018, 39(5): 657-664.

    14. [14]

      TAO Y, LI Z H, JU E G, REN J S, QU X G. Nanoscale, 2013, 5(13): 6154-6160.

    15. [15]

    16. [16]

      SHEN Y M, TIAN R, MA H Y, SUN X H. Luminescence, 2021, 36(3): 705-710.

    17. [17]

      REYES-CRUZALEY A P, OCHOA-TERAN A, TIRADO-GUIZAR A, FELIX-NAVARRO R M, ALONSO-NUNEZ G, PINA-LUIS G. Anal. Methods, 2021, 13(22): 2495-2503.

    18. [18]

      ZHANG S, LI J, HUANG S, MA X, ZHANG C. Chem. Pap., 2021, 75(8): 3761-3769.

    19. [19]

      LING Y, WU J J, GAO Z F, LI N B, LUO H Q. J. Phys. Chem. C, 2015, 119(48): 27173-27177.

    20. [20]

      SHANG L, DONG S J, NIENHAUS G U. Nano Today, 2011, 6(4): 401-418.

    21. [21]

      DENG H H, LI K L, ZHUANG Q Q, PENG H P, ZHUANG Q Q, LIU A L, XIA X H, CHEN W. Nanoscale, 2018, 10(14): 6467-6473.

    22. [22]

      ZHONG Y P, WANG Q P, HE Y, GE Y L, SONG G W. Sens. Actuators, B, 2015, 209: 147-153.

    23. [23]

      JIA X, LI J, WANG E. Small, 2013, 9(22): 3873-3879.

    24. [24]

      CAI Z, ZHANG C, JIA K. Chem. Pap., 2020, 74(6): 1831-1838.

    25. [25]

      FENG J, JU Y Y, LIU J J, ZHANG H G, CHEN X G. Anal. Chim. Acta, 2015, 854: 153-160.

    26. [26]

      WEN T, QU F, LI N B, LUO H Q. Anal. Chim. Acta, 2012, 749: 56-62.

    27. [27]

      MI G, SHI H, YANG M, WANG C, HAO H, FAN J. Spectrochim. Acta, Part A, 2020, 241: 1-7.

    28. [28]

      HUANG K Y, HE H X, HE S B, ZHANG X P, PENG H P, LIN Z, DENG H H, XIA X H, CHEN W. Sens. Actuators, B, 2019, 296: 1-7.

    29. [29]

      CHEKIN F, MYSHIN V, YE R, MELINTE S, SINGH S K, KURUNGTO S, BOUKHERROUB R, SZUNERITS S. Anal. Bioanal. Chem., 2019, 411(8): 1509-1516.

    30. [30]

      ER E, ERK N. Microchim. Acta, 2020, 187(4): 1-9.

    31. [31]

      MADRAKIAN T, ASL K D, AHMADI M, AFKHAMI A. RSC Adv., 2016, 6(76): 72803-72809.

    32. [32]

      YU J B, JIN H, GUI R J, WANG Z H, GE F. Talanta, 2017, 162: 435-439.

    33. [33]

      YANG T Q, PENG B, Shan B Q, ZONG Y X, JIANG J G, WU P, ZHANG K. Nanomaterials, 2020, 10(2): 1-24.

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    3. [3]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    4. [4]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    5. [5]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    8. [8]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    9. [9]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    10. [10]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    11. [11]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    12. [12]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    20. [20]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

Metrics
  • PDF Downloads(9)
  • Abstract views(826)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return