Citation: CHEN Ping,  LI Dan-Dan,  FU Ji-Hong,  JIANG Xin-Xing. Microwave-assisted GO/Fe3O4/ZIF-8 Magnetic Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry for Determination of Volatile Components in Lavender[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 747-756. doi: 10.19756/j.issn.0253-3820.210764 shu

Microwave-assisted GO/Fe3O4/ZIF-8 Magnetic Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry for Determination of Volatile Components in Lavender

  • Corresponding author: FU Ji-Hong, fjh.518@163.com
  • Received Date: 22 September 2021
    Revised Date: 20 December 2021

    Fund Project: Supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (No.2020D01C032) and the National Natural Science Foundation of China (No.21565024).

  • A novel microwave-assisted graphene oxide/ferroferric oxide/2-methylimidazole zinc salt magnetic solid phase extraction (GO/Fe3O4/ZIF-8-MSPE) method was successfully developed for determination of volatile constituents in lavender using gas chromatography-mass spectrometry (GC-MS). Fe3O4 nanoparticles had the dual effects of magnetic separation and microwave absorption. The effective parameters of GO/Fe3O4/ZIF-8-MSPE were optimized. Under the optimal conditions including 5 mg of GO/Fe3O4/ZIF-8 as adsorbent, ethyl acetate as desorption solvent, microwave power of 600 W and extraction time of 10 min,the limits of detection and limits of quantification were in the ranges of 0.15-0.56 ng and 4.00-4.29 ng, respectively. The developed method was successfully applied to analyze 21 kinds of lavender from two different harvest years (2012 and 2017), and a total of 49 kinds of compounds were identified. The results of principal component analysis (PCA) provided a clear separation between those lavender samples harvested in different years. The results showed that the GO/Fe3O4/ZIF-8-MSPE was a fast, sensitive and simple method for determination of volatile constituents in plant materials.
  • 加载中
    1. [1]

      YOLANDE D, SANDRINE M, CATHERINE S, FREDERIC J, BERNARD P, JEANMARIE B, CAMILLE N, SYLVIE B, FLORENCE N. Plants, 2020, 9(12):1640.

    2. [2]

      PORTO C D, DECORTI D, KIKIC I. Food Chem., 2008, 112(4):1072-1078.

    3. [3]

      XIAO Z B, LI Q, NIU Y W, ZHOU X, LIU J H, XU Y B, XU Z Q. Ind. Crops Prod., 2017, 108:748-755.

    4. [4]

      PENG Y Y, BISHOP K S, QUEK S Y. Molecules, 2019, 24(11):2053.

    5. [5]

      JING C L, HUANG R H, SU Y, LI Y Q, ZHANG C S. Biomolecules, 2019, 9(10):518.

    6. [6]

      WANG Z, WANG L, LI T, ZHOU X, DING L, YU Y, YU A, ZHANG H. Anal. Bioanal. Chem., 2006, 386(6):1863-1868.

    7. [7]

      XU M, LIU M, SUN M, CHEN K, CAO X, HU Y. Talanta, 2016, 150:125-134.

    8. [8]

    9. [9]

      WU J R, ZHAO H Y, XIAO D L, CHUONG P H, HE J, HE H. J.Chromatogr. A, 2016, 1454:1-8.

    10. [10]

      GUO C, XIA F, WANG Z, ZHANG L, XI L, ZUO Y. J. Alloy Compd., 2015, 631:183-191.

    11. [11]

      KAUSHIK A, SOLANKI P R, ANSARI A A, AHMAD S, MALHOTRA B D. Electrochem. Commun., 2008, 10:1364-1368.

    12. [12]

      SONG S, RAO R, YANG H, LIU H, ZHANG A. Nanotechnology, 2010, 21:185602.

    13. [13]

      HUANG D N, WANG X Y, DENG C H, SONG G X, CHENG H F, ZHANG X M. J. Chromatogr. A, 2014, 1325:65-71.

    14. [14]

      LI Z B, HUANG D N, FU C F, WEI B W, YU W J, DENG C H, ZHANG X M. J. Chromatogr. A, 2011, 1218:6232-6239.

    15. [15]

      ZHAO J, CHEN H, YE H, ZHANG B, XU L. Soft Matter, 2019, 15(45):9224-9232.

    16. [16]

    17. [17]

    18. [18]

      CHEN G, WANG Z G, DENAGAMAGE S, ZHENG S Y. ACS Appl. Mater. Interfaces, 2016, 8(16):10234-10242.

    19. [19]

      MACIEL E V S, TOFFOLI A L D, NETO E S, NAZARIO C E D, LANCAS F M. TrAC-Trends Anal. Chem., 2019, 119:115633.

    20. [20]

      LI Y J, MA C C, NIAN P, LIU H O, ZHANG X F. J. Membr. Sci., 2019, 581:344-354.

    21. [21]

      JAZIREHPOUR M, SEYYED E S A. J. Alloy Compd., 2015, 638:188-196.

    22. [22]

      YAN S, QI T T, CHEN D W, LI Z, LI X J, PAN S Y. J. Chromatog. A, 2014, 1347:30-38.

    23. [23]

      ABDI J, VOSSOUGHI M, MAHMOODI N M, ALEMZADEH I. Ultrason. Sonochem., 2017, 39:550-564.

    24. [24]

    25. [25]

      YAN S, QI T T, CHEN D W, LI Z, LI X J, PAN S Y. J. Chromatogr. A, 2014, 1347:30-38.

    26. [26]

      SOYSAL F, ÇIPLAK Z, GETIREN B, GOKALP C, YILDIZ N. Colloids Surf. A, 2019, 578:123623.

    27. [27]

    28. [28]

      LI N, ZHOU L, JIN X Y, OWENS G, CHEN Z L. J. Hazard. Mater., 2019, 366:563-572.

    29. [29]

      TIAN N, WU J F, WANG J Q, DAI W. J. Chem. Eng. Data, 2019, 64(12):5716-5724.

    30. [30]

      QI Y, CAO X L, ElATY A, CONG M, LI H, JIANG Z J, SHE Y X, WANG S S, WANG J, YANG S X. J. Nanosci. Nanotechnol., 2019, 19(6):3310-3318.

    31. [31]

      KATARZYNA T, MARCIN K, EDWARD R, ROBERT S, FRANCESCO C. Molecules, 2019, 24(18):3354-3369.

    32. [32]

      SKOLD M, KARLBERG A T, MATURA M, BORJE A. Food Chem. Toxicol., 2005, 44(4):538-545.

    33. [33]

      SKOLD M, HARAMBASIC E, KARLBERG A T. Chem. Res. Toxicol., 2004, 17(12):1697-1705.

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    5. [5]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    6. [6]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    7. [7]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    8. [8]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    11. [11]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    14. [14]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    17. [17]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    18. [18]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(6)
  • Abstract views(414)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return