Citation: ZHOU Jian-Hong,  LIU Zhang,  LING Yu-Lin,  ZENG Bo-Ping,  ZHANG Heng,  DENG Ke-Qin. Bismuth Oxyiodide-Bismuth Hybridized with Short Carbon Nanotubes as Cathode Photoelectrochemical Sensing Platform for Determination of Chlorpyrifos[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(2): 253-262. doi: 10.19756/j.issn.0253-3820.210758 shu

Bismuth Oxyiodide-Bismuth Hybridized with Short Carbon Nanotubes as Cathode Photoelectrochemical Sensing Platform for Determination of Chlorpyrifos

  • Corresponding author: ZHOU Jian-Hong,  DENG Ke-Qin, 
  • Received Date: 22 September 2021
    Revised Date: 17 December 2021

    Fund Project: Supported by the Rural Revitalization Project Launched in 2021 (Nos.Qian-Jiao-He KY-Zi [2012]017-18, [2012]017-10), the Doctor Introduction Fund Project of Zunyi Normal University (Nos.ZunshiBS[2020] 02, Zunshi BS[2021] 07) and the Talent Base for Environmental Protection and Mountain Agricultural in Chishui River Basin

  • A bismuth oxyiodide-bismuth/short carbon nanotube (BiOI-Bi/s-CNTs) composite was prepared by hybridization of short carbon nanotubes (s-CNTs) with bismuth oxyiodide-bismuth (BiOI-Bi). The morphological analysis by scanning electron microscopy (SEM) showed that the prepared BiOI-Bi/s-CNTs consisted of s-CNTs loaded with nanoparticles and a large number of microspheres.Besides, the transient photocurrent displayed that the BiOI-Bi/s-CNTs had excellent photoelectrochemical performance. Thus, a novel cathodic photoelectrochemical method was developed for detection of chlorpyrifos (CPF) with BiOI-Bi/s-CNTs as photocathode and K3[Fe(CN)6] as photoelectron acceptor on the basis of that CPF chelated on the cathode surface and quenched the photocurrent signal. The CPF concentration in the range of 4.0 pg/mL-10.0 ng/mL was positively correlated with the quenched photocurrent, and the detection limit was estimated to be 1.89 pg/mL. The recoveries of CPF in real cabbage and Chinese cabbage were 90.0%-108.0%. This work provided a more specific and sensitive method for determination of CPF.
  • 加载中
    1. [1]

      WANG Y, GAO Z D, SHEN F, LI Y, ZHANG S N, REN X Q. J. Agric. Food Chem., 2015, 63: 5196-5204.

    2. [2]

      GAO N, GUO X C, ZHANG K K. Instrum. Sci. Technol., 2014, 42: 267-277.

    3. [3]

      MANUEL M J, EWA C, IWONA C. Environ. Sci. Pollut. Res., 2015, 22(1): 369-378.

    4. [4]

    5. [5]

      JIANG D, DU X, CHEN D, LI Y, HAO N, QIAN J, ZHONG H, YOU T, WANG K. Carbon, 2016, 102: 10-17.

    6. [6]

      GULER M, TURKOGLU V, BASI Z. Electrochim. Acta, 2017, 240: 129-135.

    7. [7]

      WANG S M, GE L, SONG X R, YU J H, GE S G, HUANG J D, ZENG F. Biosens. Bioelectron., 2012, 31 (1): 212-218.

    8. [8]

      HAO N, ZHANG Y, ZHONG H, ZHOU Z, HUA R, QIAN J, LIU Q, LI H, WANG K. Anal. Chem., 2017,89(19): 10133-10136.

    9. [9]

      DENG K, XIAO J, LIU Z, LI C, WANG J, YI Q, HUANG H, ZHOU H. Biosens. Bioelectron., 2021, 181: 113152.

    10. [10]

      DENG K, WANG H, XIAO J, LI C, ZHANG S, HUANG H. Anal. Chim. Acta, 2019, 1090: 143-150.

    11. [11]

      YANG H, HU M, LI Z, ZHAO P, XIE L, SONG X, YU J. Anal. Chem., 2019, 91(22): 14577-14585.

    12. [12]

      GUAN M L, XIAO C, ZHANG J, FANS J, AN R, CHENG Q M, XIE J F. J. Am. Chem. Soc., 2013,135(28): 10411-10417.

    13. [13]

      CHENG H F, HUANG B B, DAI Y. Nanoscale, 2014, 6(4): 2009-2026.

    14. [14]

      XIAO X, HAO R, LIANG M, ZUO X X, NAN J M, LI L S, ZHANG W D. J. Hazard. Mater., 2012, 233: 122-130.

    15. [15]

      LIU H, CAO W R, SU Y, WANG Y, WANG X H. Appl. Catal., B, 2012, 111: 271-279.

    16. [16]

      XIAO J, DENG K, LIU Z, LI C, WANG J, YI Q, HUANG H, ZHOU H. Sens. Actuators, B, 2021, 348: 130691.

    17. [17]

      CHANG C, ZHU L, FU Y, CHU X. Chem. Eng. J., 2013, 233: 305-314.

    18. [18]

      JIANG D, DU X, CHEN D, LI Y, HAO N, QIAN J, ZHONG H, YOU T, WANG K. Carbon, 2016, 102: 10-17.

    19. [19]

      ZHU Y, YAN K, XU Z, WU J. Biosens. Bioelectron., 2019, 131: 79-87.

    20. [20]

      YANG L, ZHAO Z, CAI Z. SN Appl. Sci., 2020, 2: 1214.

    21. [21]

      CAO J, XU B, LIN H, CHEN S. Chem. Eng. J., 2013, 228: 482-488.

    22. [22]

      WANG R, WU J, MAO X, WANG J, LIU Q, QI Y, HE P, QI X, LIU G, GUAN Y. Appl. Surf. Sci., 2021, 556: 149804.

    23. [23]

      XU Y, JIANG D, ZHANG M, ZHANG Z, QIAN J, HAO N, DING C, WANG K. Sens. Actuators, B, 2020, 316: 128142.

    24. [24]

      CHANG W, WEI J, XIE X, LIU Y, YANG Z. Sens. Actuators, B, 2018, 276: 180-188.

    25. [25]

      UYGUN O Z, DILGIN Y. Sens. Actuators, B, 2013, 188: 78-84.

    26. [26]

      XU G, HUO D, HOU C, ZHAO Y, BAO J, YANG M, FA H. Talanta, 2018, 178: 1046-1052.

    27. [27]

      NAGABOOSHANAM S, ROY S, MATHUR A, MUKHERJEE I, KRISHNAMURTHY S L, BHARADWAJ M. Sci. Rep., 2019, 9: 19862.

    28. [28]

      ZAHRAN M, KHALIFA Z, ZAHRAN A M, AZZEM A M. Microchem. J., 2021, 165: 106173.

    29. [29]

      TALAN A, MISHRA A, EREMIN A S, NARANG J, KUMAR A, GANDHI S. Biosens. Bioelectron., 2018, 105: 14-21.

    30. [30]

      RAI S, SINGH A K, SRIVASTAVA A, YADAV S, SIDDIQUI M H, MUDIAM M K R. Food Anal. Methods, 2016, 9: 2656-2669.

    31. [31]

      WANG P, DAI W, GE L, YAN M, GE S, YU J. Analyst, 2013, 138: 939-945.

    32. [32]

  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    13. [13]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    18. [18]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(7)
  • Abstract views(838)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return