Citation: ZENG Hong-Da,  DU Xiao-Xia,  PAN Jia-Kai,  WANG Yi-Fei,  CHEN Zhen-Cheng,  LI Hua. Study on High-field Asymmetric Waveform Ion Mobility Spectrometry System Using Inert Gas to Enhance Discharge of Hollow Needle-Ring Ion Source[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(5): 680-691. doi: 10.19756/j.issn.0253-3820.210750 shu

Study on High-field Asymmetric Waveform Ion Mobility Spectrometry System Using Inert Gas to Enhance Discharge of Hollow Needle-Ring Ion Source

  • Corresponding author: LI Hua, lihua@guet.edu.cn
  • Received Date: 16 September 2021
    Revised Date: 3 January 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.62163009, 61864001) and the Natural Science Foundation of Guangxi, China (No.2021JJD170019).

  • Resolving power and sensitivity are two important parameters to characterize the performance of high field asymmetric waveform ion mobility spectrometry (FAIMS). To simultaneously improve the resolving power and sensitivity of flat plate FAIMS, a hollow needle-ring ion source for inert gas enhanced discharge is proposed in this work. At standard atmospheric pressure, inert gases helium and argon are introduced into the needle-ring ion source to improve the ionization efficiency of the ion source and achieve effective ionization of VOCs. Helium and argon gas with gas flow rates of 0.2, 0.3 and 0.4 L/min were added at a nitrogen flow rate of 1.8 L/min and a radio frequency voltage (RF) of 300 V, respectively. Compared with pure nitrogen, the signal intensities of acetone, ethanol and ethyl acetate were increased by 19.07, 17.26 and 10.85 times, respectively, after passing helium, and 4.86, 13.37 and 4.63 times, respectively, after passing argon, and the mixture of helium, argon and nitrogen resulted in multiple ion peaks in the FAIMS spectrum. The results showed that both helium and argon could improve both resolving power and sensitivity, and that helium was more effective than argon. Mass spectrometry experiments and penning ionization theory analysis showed that the main ions produced by ionization were monomeric and dimeric ions. This study provided new ideas and methods to improve the resolving power and sensitivity of FAIMS systems.
  • 加载中
    1. [1]

      HERNÁNDEZ M M, ROPARTZ D, GARCÍA A M, ROGNIAUX H, DERVILLY P G, BIZEC B L. Molecules, 2019, 24(15):2706.

    2. [2]

      MILLER R A, NAZAROV E G, EICEMAN G A, THOMAS KING A. Sens. Actuators, A, 2001, 91(3):301-312.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

      COSTANZO M T, BOOCK J J, KEMPERMAN R H, WEI M S, YOST R A. Int. J. Mass Spectrom., 2016, 422:188-196.

    7. [7]

      ARASARADNAM R P, MCFARLANE M, DAULTON E, SKINNER J, COVINGTON J. Dig. Liver Dis., 2016, 48(2):148-153.

    8. [8]

      SUN T, HE J, QIAN S, ZHENG Y, ZHANG K, LUO J, TIAN F. Sens. Actuators, B, 2020, 320:128595.

    9. [9]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, RIDGEWAY M E, PILO A L, KAPLAN D A, GLISH G L. J. Am. Soc. Mass Spectrom., 2015, 26(10):1746-1753.

    10. [10]

      WANG H W, CHEN C L, LIU Y J, ZHANG X T, KONG D Y, WANG X Z, LUO J K. Anal. Methods, 2015, 7(4):1401-1406.

    11. [11]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal. Chem., 2010, 82(6):2456-2462.

    12. [12]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(1):23-29.

    13. [13]

      SHVARTSBURG A A, IBRAHIM Y M, SMITH R D. J. Am. Soc. Mass Spectrom., 2014, 25(3):480-489.

    14. [14]

      KUKLYA A, ENGELHARD C, KERPEN K, TELGHEDER U. J. Anal. At. Spectrom., 2016, 31(8):1574-1581.

    15. [15]

      SANTIAGO B G, HARRIS R A, ISENBERG S L, GLISH G L. Analyst, 2015, 140(20):6871-6878.

    16. [16]

      SHVARTSBURG A A, SMITH R D. Anal. Chem., 2011, 83(23):9159-9166.

    17. [17]

      BARNETT D A, PURVES R W, ELLS B, GUEVREMONT R. J. Mass Spectrom., 2000, 35(8):976-980.

    18. [18]

    19. [19]

    20. [20]

      WANG H, LIU Y J, LI S, WANG X Z, DENG J Y, CHEN C L. Int. J. Mass Spectrom., 2019, 442:7-13.

    21. [21]

      KUKLYA A, REINECKE T, UTESCHIL F, KERPEN K, ZIMMERMANN S, TELGHEDER U. Talanta, 2017, 162:159-166.

    22. [22]

    23. [23]

    24. [24]

      PURVES R W, BARNETT D A, ELLS B, GUEVREMONT R. J. Am. Soc. Mass Spectrom., 2001, 12(8):894-901.

    25. [25]

      KARPAS Z, EICEMAN G A, KRYLOV E V, KRYLOVA N. Int. J. Ion Mobility Spectrom., 2006, 7(1):C8-C18.

    26. [26]

      SHVARTSBURG A A, DANIELSON W F, SMITH R D. Anal Chem., 2010, 82:2456-2462.

    27. [27]

      KRYLOV E V, NAZAROV E G, MILLER R A. Int. J. Mass Spectrom., 2007, 266(1-3):76-85.

    28. [28]

      HIRAOKA K, FUJIMAKI S, KAMBARA S, FURUYA H, OKAZAKI S. Rapid Commun. Mass Spectrom., 2004, 18(19):2323-2330.

    29. [29]

      HIRAOKA K, FURUYA H, KAMBARA S, SUZUKI S, HASHIMOTO Y, TAKAMIZAWA A. Rapid Commun. Mass Spectrom., 2006, 20(21):3213-3222.

    30. [30]

      ANDRADE F J, SHELLEY J T, WETZEL W C, WEBB M R, GAMEZ G, RAY S J, HIEFTJE G M. Anal. Chem., 2008, 80(8):2646-2653.

    31. [31]

      DZIDIC I, CARROLL D I, STILLWELL R N, HORNING E C. Anal. Chem., 2002, 48(12):1763-1768.

    32. [32]

      HORNING E C, CARROLL D I, DZIDIC I, HAEGELE K D, HORNING M G, STILLWELL R N. J. Chromatogr. Sci., 1974, 12(11):725-729.

    33. [33]

      KAMBARA H, MITSUI Y, KANOMATA I. Anal. Chem., 1979, 51(9):1447-1452.

    34. [34]

      WEI M S, KEMPERMAN R H, YOST R A. J. Am. Soc. Mass Spectrom., 2019, 30(5):731-742.

    35. [35]

      RORRER L C, YOST R A. Int. J. Mass Spectrom., 2015, 378:336-346.

    36. [36]

      RUOTOLO B T, MCLEAN J A, GILLIG K J, RUSSELL D H. J. Mass Spectrom., 2004, 39(4):361-367.

    37. [37]

      ZENG Y, TANG F, ZHAI Y D, WANG X H. Rev. Sci. Instrum., 2017, 88(9):1-10.

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    3. [3]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    4. [4]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(6)
  • Abstract views(624)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return