Citation: SHANG Xu-Dong,  WANG Chang,  YU Jing-Yuan,  ZHANG Yu,  DU Yan. Colorimetric Detection of Fluoride Ion by Oxidase Mimics Based on Ceric Dioxide Nanorods-Polyvinyl Alcohol Aerogel[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2023-2031. doi: 10.19756/j.issn.0253-3820.210692 shu

Colorimetric Detection of Fluoride Ion by Oxidase Mimics Based on Ceric Dioxide Nanorods-Polyvinyl Alcohol Aerogel

  • Corresponding author: ZHANG Yu,  DU Yan, 
  • Received Date: 19 August 2021
    Revised Date: 25 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21874129) and the Department of Science and Technology of Jilin Province, China (No.20200801044GH).

  • This work demonstrated an oxidase mimic, e.g. a composite consisting of poly(vinyl alcohol) aerogel (PAA) and CeO2 nanorods in-situ modified on the aerogel surface through a hydrothermal reaction. The introduction of PAA fixed the CeO2 nanorods, making its easy to separate with reaction solution in results of an improved recycling rate. The oxidase-like activity of the composite (CeO2-PAAC) could be elevated by fluorid ion (F-), which was utilized to construct a colorimetric sensor for F-, exhibiting a detection range of 80-4000 μmol/L and a detection limit (3σ) of 63.7 μmol/L. Such a value was below the Chinese criterion for the Class V surface water (80 μmol/L). Compared to other detection methods, this method had the merits of wider detection range and proportionate detection limit. Additionally, this method possessed eligible anti-interference ability and selectivity, and was adequate in detection of F- in lake water with recovery rate of 97.1%-120.4%, validating the potential application in the real scene.
  • 加载中
    1. [1]

      LIANG M M, YAN X Y. Acc. Chem. Res., 2019, 52(8):2190-2200.

    2. [2]

      WU J J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Chem. Soc. Rev., 2019,48(4):1004-1076.

    3. [3]

      QIN Z G, CHEN B, MAO Y, SHI C, LI Y, HUANG X, YANG F, GU N. ACS Appl. Mater. Interfaces, 2020, 12(51):57382-57390.

    4. [4]

      PARMEKAR M V, SALKER A V. Appl. Nanosci., 2020, 10(1):317-328.

    5. [5]

      LI S, ZHAO X T, GANG R T, CAO B Q, WANG H. Anal. Chem., 2020, 92(7):5152-5157.

    6. [6]

      TAO X Q, WANG X, LIU B W, LIU J W. Biosens. Bioelectron., 2020, 168:112537.

    7. [7]

      ZHANG R, LU N, ZHANG J, YAN R, LI J, WANG L, WANG N, LV M, ZHANG M. Biosens. Bioelectron., 2020, 150:111881.

    8. [8]

      SHARMA T K, RAMANATHAN R, WEERATHUNGE P, MOHAMMADTAHERI M, DAIMA H K, SHUKLA R, BANSAL V. Chem. Commun., 2014, 50(100):15856-15859.

    9. [9]

      ZHANG Z P, TIAN Y, HUANG P C, WU F Y. Talanta, 2020, 208:120342.

    10. [10]

      LI Y Y, HE X, YIN J J, MA Y H, ZHANG P, LI J Y, DING Y Y, ZHANG J, ZHAO Y L, CHAI Z F,ZHANG Z Y. Angew. Chem., Int. Ed., 2015, 54(6):1832-1835.

    11. [11]

      HECKERT E G, KARAKOTI A S, SEAL S, SELF W T. Biomaterials, 2008, 29(18):2705-2709.

    12. [12]

      PIRMOHAMED T, DOWDING J M, SINGH S, WASSERMAN B, HECKERT E, KARAKOTI A S, KING J E, SEAL S, SELF W T. Chem. Commun., 2010, 46(16):2736-2738.

    13. [13]

      ZHANG B L, HUYAN Y, WANG J Q, WANG W B, ZHANG Q Y, ZHANG H P. J. Am. Ceram. Soc., 2019, 102(4):2218-2227.

    14. [14]

      ASATI A, SANTRA S, KAITTANIS C, NATH S, PEREZ J M. Angew. Chem., Int. Ed., 2009, 48(13):2308-2312.

    15. [15]

      LIU H Y, LIU J W. Chemnanomat, 2020, 6(6):947-952.

    16. [16]

      XU F, LU Q, HUANG P J, LIU J. Chem. Commun., 2019, 55(88):13215-13218.

    17. [17]

      ZHAO Y L, LI H T, WANG Y Q, WANG Y W, HUANG Z C, SU H J, LIU J W. ACS Appl. Nano Mater., 2021, 4(2):2098-2107.

    18. [18]

      GRULKE E, REED K, BECK M, HUANG X, CORMACK A, SEAL S. Environ. Sci.:Nano, 2014, 1(5):429-444.

    19. [19]

      SINGH S, DOSANI T, KARAKOTI A S, KUMAR A, SEAL S, SELF W T. Biomaterials, 2011, 32(28):6745-6753.

    20. [20]

      CHEN Z J, HUANG Z, HUANG S, ZHAO J L, SUN Y, XU Z L, LIU J. Analyst, 2021, 146(3):864-873.

    21. [21]

      LIU B, HUANG Z C, LIU J W. Nanoscale, 2016, 8(28):13562-13567.

    22. [22]

      LI D, GARISTO S L, HUANG P J J, YANG J, LIU B W, LIU J W. Inorg. Chem. Commun., 2019, 106:38-42.

    23. [23]

      AHADA C P S, SUTHAR S. Exposure Health, 2019, 11(4):267-275.

    24. [24]

      YAN F, MA X Y, JIN Q F, TONG Y, TANG H L, LIN X Y, LIU J Y. Microchim. Acta, 2020, 187(8):470.

    25. [25]

      LI L, ZHANG Y H, LI Y, DUAN Y H, QIAN Y, ZHANG P D, GUO Q J, DING J W. ACS Sens., 2020,5(11):3465-3473.

    26. [26]

    27. [27]

      MURRAY E, LI Y, CURRIVAN S A, MOORE B, MORRIN A, DIAMOND D, MACKA M, PAULL B. J. Sep. Sci., 2018, 41(16):3224-3231.

    28. [28]

      FENG D Q, LIU G L, CHEN Z, LU H F, GAO Y T, FANG X B. Microchem. J., 2020, 157:104977.

    29. [29]

      DU F F, BAO Y Y, LIU B, TIAN J, LI Q B, BAI R. Chem. Commun., 2013, 49(41):4631-4633.

    30. [30]

      LIU Y, OUYANG Q, LI H H, ZHANG Z Z, CHEN Q S. ACS Appl. Mater. Interfaces, 2017, 9(21):18314-18321.

    31. [31]

      YADAV M, KUMARI S, KHAN S. Sustainable Chem. Pharm., 2020, 18:100344.

    32. [32]

      JAYEOYE T J, RUJIRALAI T. New J. Chem., 2020, 44(15):5711-5719.

    33. [33]

      MA C B, ZHANG Y, LIU Q, DU Y, WANG E K. Anal. Chem., 2020, 92(7):5319-5328.

    34. [34]

      LI L H, ZHANG M, CHANG K J, KANG Y, REN G D, HOU X Y, LIUW, WANG H J, WANG B, DIAO H P. RSC Adv., 2019, 9(55):32308-32312.

    35. [35]

      MA C B, DU B J, WANG E K. Adv. Funct. Mater., 2017, 27(10):1604423.

    36. [36]

      HUANG L, ZHANG W, CHEN K, ZHU W, LIU X, WANG R, ZHANG X, HU N, SUO Y, WANG J. Chem. Engineer. J., 2017, 330:746-752.

    37. [37]

      MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. J. Phys. Chem. B, 2005, 109(51):24380-24385.

    38. [38]

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    9. [9]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    18. [18]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    19. [19]

      Qin Tu Anju Tao Tongtong Ma Jinyi Wang . Innovative Experimental Teaching of Escherichia coli Detection Based on Paper Chip. University Chemistry, 2024, 39(6): 271-277. doi: 10.3866/PKU.DXHX202309062

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(5)
  • Abstract views(695)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return