Citation: LI Zi-Ying,  LI De-Yan,  YANG Jian-Mei,  HU Rong,  YANG Tong,  YANG Yun-Hui. Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(7): 1032-1040. doi: 10.19756/j.issn.0253-3820.210686 shu

Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen

  • Corresponding author: YANG Tong,  YANG Yun-Hui, 
  • Received Date: 17 August 2021
    Revised Date: 26 April 2022

    Fund Project: Supported by the National Natural Science Foundation of China (Nos.21904114, 21765026) and the Yunnan Fundamental Research Projects (Nos.202001AU070067, 202201AT070028).

  • A fluorescence resonance energy transfer (FRET)-DNA nanomachine based on BHQ-2 and Cy5 was constructed for detection of prostate specific antigen (PSA). The introduction of fuel DNA would trigger the entropy increasing effect of the DNA nanomachine to cause the recycling of DNA nanomachine and release of more Cy5 signal probes, which further facilitated the cycling signal amplification for PSA analysis. The FRET-DNA nanomachine exhibited many advantages such as enzyme-free, low background, high sensitivity, high selectivity and easy operation. The DNA complementary hybridizations in working process of DNA nanomachine were characterized by agarose gel electrophoresis. Some important experimental parameters, such as the concentration and incubating time of fuel DNA, the concentration of PSA aptamer, were optimized. Under the optimized experimental conditions, the FRET-DNA nanomachine was employed to detect PSA protein with linearity ranging from 0.1 to 100 ng/mL and the limit of detection limit was 93.3 pg/mL (3σ). Comparing with commercial PSA kits based on enzyme-linked immunosorbent assay, this proposed strategy exhibited wider linearity rang and lower detection limit, which could be used to detect PSA in real serum samples. The easy operation and high reliability of this strategy showed potential quantitative power for future biomedical detection.
  • 加载中
    1. [1]

      BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.

    2. [2]

      DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.

    3. [3]

      YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.

    4. [4]

      TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.

    5. [5]

      CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.

    6. [6]

      MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.

    7. [7]

      CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.

    8. [8]

      YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.

    9. [9]

      HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.

    10. [10]

      WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.

    11. [11]

      YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.

    12. [12]

      YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.

    13. [13]

      ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.

    14. [14]

      ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.

    15. [15]

      HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.

    16. [16]

      LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.

    17. [17]

      LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.

    18. [18]

      CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.

    19. [19]

      JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.

    20. [20]

      ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.

    21. [21]

      MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.

    22. [22]

      GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.

    23. [23]

      YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.

    24. [24]

      SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.

    25. [25]

      FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.

    26. [26]

      CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.

    27. [27]

      FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.

    28. [28]

      FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.

  • 加载中
    1. [1]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    11. [11]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    14. [14]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    18. [18]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

Metrics
  • PDF Downloads(10)
  • Abstract views(635)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return