Citation:
LI Zi-Ying, LI De-Yan, YANG Jian-Mei, HU Rong, YANG Tong, YANG Yun-Hui. Fluorescence Resonance Energy Transfer-DNA Nanomachine-based Cycling Signal Amplified Strategy for Detection of Prostate Specific Antigen[J]. Chinese Journal of Analytical Chemistry,
;2022, 50(7): 1032-1040.
doi:
10.19756/j.issn.0253-3820.210686
-
A fluorescence resonance energy transfer (FRET)-DNA nanomachine based on BHQ-2 and Cy5 was constructed for detection of prostate specific antigen (PSA). The introduction of fuel DNA would trigger the entropy increasing effect of the DNA nanomachine to cause the recycling of DNA nanomachine and release of more Cy5 signal probes, which further facilitated the cycling signal amplification for PSA analysis. The FRET-DNA nanomachine exhibited many advantages such as enzyme-free, low background, high sensitivity, high selectivity and easy operation. The DNA complementary hybridizations in working process of DNA nanomachine were characterized by agarose gel electrophoresis. Some important experimental parameters, such as the concentration and incubating time of fuel DNA, the concentration of PSA aptamer, were optimized. Under the optimized experimental conditions, the FRET-DNA nanomachine was employed to detect PSA protein with linearity ranging from 0.1 to 100 ng/mL and the limit of detection limit was 93.3 pg/mL (3σ). Comparing with commercial PSA kits based on enzyme-linked immunosorbent assay, this proposed strategy exhibited wider linearity rang and lower detection limit, which could be used to detect PSA in real serum samples. The easy operation and high reliability of this strategy showed potential quantitative power for future biomedical detection.
-
-
-
[1]
BATH J, TURBERFIELD A J. Nat. Nanotechnol, 2007, 2(5):275-284.
-
[2]
DONG Y, YAO C, ZHU Y, YANG L, LUO D, YANG D. Chem. Rev., 2020, 120(17):9420-9481.
-
[3]
YANG W, SHEN Y, ZHANG D, LI C, YUAN R, XU W. Anal. Chem., 2019, 91(12):7782-7789.
-
[4]
TORELLI E, MARINI M, PALMANO S, PIANTANIDA L, POLANO C, SCARPELLINI A, LAZZARINO M, FIRRAO G. Small, 2014, 10(14):2918-2926.
-
[5]
CHEN K, HUANG Q, FU T, KE G, ZHAO Z, ZHANG X, TAN W. Anal. Chem., 2020, 92(11):7404-7408.
-
[6]
MASON S D, TANG Y, LI Y, XIE X, LI F. TrAC-Trends Anal. Chem., 2018, 107:212-221.
-
[7]
CAO L P, WANG Y, BAI Y, JIANG Y J, LI C M, ZUO H, LI Y F, ZHEN S J, HUANG C Z. ACS Appl. Nano Mater., 2021, 4(3):2849-2854.
-
[8]
YANG X, TANG Y, MASON S D, CHEN J, LI F. ACS Nano, 2016, 10(2):2324-2330.
-
[9]
HUANG J, ZHU L, JU H, LEI J. Anal. Chem., 2019, 91(11):6981-6985.
-
[10]
WU N, WANG K, WANG Y T, CHEN M L, CHEN X W, YANG T, WANG J H. Anal. Chem., 2020, 92(16):11111-11118.
-
[11]
YANG H, XIAO M, LAI W, WAN Y, LI L, PEI H. Anal. Chem., 2020, 92(7):4990-4995.
-
[12]
YANG X, SHI D, ZHU S, WANG B, ZHANG X, WANG G. ACS Sens., 2018, 3(7):1368-1375.
-
[13]
ZHONG X, YANG S, YANG P, DU H, HOU X, CHEN J, ZHOU R. Chem.-Eur. J., 2018, 24(71):19024-19031.
-
[14]
ZHANG R, LI S, WANG J, QU X, ZHAO Y, LIU S, WANG Y, HUANG J, YU J. Sens. Actuators, B, 2020, 320:128385.
-
[15]
HE X, ZENG T, LI Z, WANG G, MA N. Angew. Chem., Int. Ed., 2016, 55(9):3073-3076.
-
[16]
LV Y, CUI L, PENG R, ZHAO Z, QIU L, CHEN H, JIN C, ZHANG X B, TAN W. Anal. Chem., 2015, 87(23):11714-11720.
-
[17]
LI Y, LUO Z, ZHANG C, SUN R, ZHOU C, SUN C. TrAC-Trends Anal. Chem., 2021, 134:116142.
-
[18]
CHEN B, SU Q, KONG W, WANG Y, SHI P, WANG F. J. Mater. Chem. B, 2018, 6(19):2924-2944.
-
[19]
JARES-ERIJMAN E A, JOVIN T M. Nat. Biotechnol., 2003, 21(11):1387-1395.
-
[20]
ZHANG D Y, TURBERFIELD A J, YURKE B, WINFREE E. Science, 2007, 318(5853):1121-1125.
-
[21]
MA F, WEI S H, ZHANG C Y. Anal. Chem., 2019, 91(12):7505-7509.
-
[22]
GAO R, CHENG Z, WANG X, YU L, GUO Z, ZHAO G, CHOO J. Biosens. Bioelectron., 2018, 119:126-133.
-
[23]
YANG T, HOU P, ZHENG L L, ZHAN L, GAO P F, LI Y F, HUANG C Z. Nanoscale, 2017, 9(43):17020-17028.
-
[24]
SRIVASTAVA M, NIRALA N R, SRIVASTAVA S K, PRAKASH R. Sci. Rep., 2018, 8:1923.
-
[25]
FENG Z, ZHI S, GUO L, ZHOU Y, LEI C. Microchim. Acta, 2019, 186(4):252.
-
[26]
CHEN Y, GUO X, LIU W, ZHANG L. Microchim. Acta, 2019, 186(2):112.
-
[27]
FENG D, SU J, XU Y, HE G, WANG C, WANG X, PAN T, DING X, MI X. Microsyst. Nanoeng., 2021, 7(1):33.
-
[28]
FANG B Y, AN J, LIU B, ZHAO Y D. Colloids Surf., B, 2019, 175:358-364.
-
[1]
-
-
-
[1]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[2]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[3]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[4]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[5]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[8]
Zijuan LI , Xuan LÜ , Jiaojiao CHEN , Haiyang ZHAO , Shuo SUN , Zhiwu ZHANG , Jianlong ZHANG , Yanling MA , Jie LI , Zixian FENG , Jiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138
-
[9]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[10]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[11]
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
-
[12]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[13]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[14]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[15]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[16]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[17]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[18]
Shanying Chen , Kangning Huo , Ke Qi , Jingyi Li , Shuxin Li , Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(636)
- HTML views(119)