Citation: MA Rong-Peng,  YANG Xiao-Long,  WANG Xian,  GE Jun-Jie,  LIU Chang-Peng,  XING Wei. Evaluation of Palladium Phosphide as Efficient Electrocatalyst for Hydrogen Evolution Reaction[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 2032-2038. doi: 10.19756/j.issn.0253-3820.210679 shu

Evaluation of Palladium Phosphide as Efficient Electrocatalyst for Hydrogen Evolution Reaction

  • Corresponding author: GE Jun-Jie,  XING Wei, 
  • Received Date: 13 August 2021
    Revised Date: 24 September 2021

    Fund Project: Supported by the National Key R&D Program of China (No.2018YFB1502400) and the Jilin Province Science and Technology Development Program (Nos.20190201300JC, 20180101030JC).

  • Hydrogen production by water electrolysis has the advantages such as high efficiency and green development, and higher hydrogen purity. The development of efficient electrocatalysts for hydrogen evolution reaction (HER) must be based on the minimal overpotential to trigger proton reduction and fast kinetics. Palladium-based catalysts are used as one of the electrocatalysts for HER. However, they typically exhibit low activity in electrocatalytic hydrogen evolution reaction as too strong Pd-H bonding makes the electronic desorption of H adatoms (Had) hardly occur. Based on this, a highly efficient catalyst with uniformly dispersed palladium phosphide nanoparticles (Pd3P NP) embedded in a nitrogen-phosphorus co-doped carbon material (Pd3P/NPC) was designed and synthesized in this work. The Pd3P/NPC presented a small overpotential of 11 mV to delivering 10 mA/cm2, and a robust stability, which was much better than Pd/C, other reported Pd-based catalysts, and even Pt/C. Moreover, the Pd3P/NPC electrocatalyst exhibited high turnover frequencies at 20 mV (5.95 H2/s). It was higher than that of commercial Pt/C and Pd/C catalysts. Experiments evidence revealed that the introduction of P atoms into the Pd nanocrystals formed a Pd-P bond, which restructured the electronic structure of Pd and changed the content of Pd(0) and Pd(+2), promoting the desorption of H atoms. Meanwhile, the introduction of P increased the active site and intrinsic activity.
  • 加载中
    1. [1]

      ZHANG L J, JANG H, WANG Y, LI Z J, ZHANG W, KIM M G, YANG D J, LIU S G, LIU X, CHO J P. Adv. Sci., 2021, 8(15):2004516.

    2. [2]

      XIAO X, ZHANG H, XIONG Y, LIANG F, YANG Y W. Adv. Funct. Mater., 2021, 31(42):2105562.

    3. [3]

      KWEON D H, OKYAY M S, KIM S J, JEON J P, NOH H J, PARK N J, MAHMOOD J, BAEK J B. Nat. Commun., 2020, 11:1278.

    4. [4]

      WANG J, WEI Z Z, MAO S J, LI H R, WANG Y. Energy Environ. Sci., 2018, 11(4):800-806.

    5. [5]

      JIANG P, CHEN J T, WANG C L, YANG K, GONG S P, LIU S, LIN Z Y, LI M S, XIA G L, YANG Y, SU J W, CHEN Q W. Adv. Mater., 2018, 30(9):1705324.

    6. [6]

      CHAO T T, LUO X, CHEN W X, JIANG B, GE J J, LIN Y, WU G, WANG X Q, HU Y M, ZHUANG Z B, WU Y E, HONG X, LI Y D. Angew. Chem., Int. Ed., 2017, 56(50):16047-16051.

    7. [7]

      CHENG H F, YANG N L, LIU G G, GE Y Y, HUANG J T, YUN Q B, DU Y H, SUN C J, CHEN B, LIU J W, ZHANG H. Adv. Mater., 2020, 32(11):1902964.

    8. [8]

      CHEN J T, XIA G L, JIANG P, YANG Y, LI R, SHI R H, SU J W, CHEN Q W. ACS Appl. Mater. Interfaces, 2016, 8(21):13378-13383.

    9. [9]

      LI J, LI F, GUO S X, ZHANG J, MA J T. ACS Appl. Mater. Interfaces, 2017, 9(9):8151-8160.

    10. [10]

      BHOWMIK T, KUNDU M K, BARMAN S. ACS Catal., 2016, 6(3):1929-1941.

    11. [11]

      ZHANG D, ZHAO H, HUANG B L, LI B, LI H D, HAN Y, WANG Z C, WU X K, PAN Y, SUN Y J, SUN X M, LAI J P, WANG L. ACS Cent. Sci., 2019, 5(12):1991-1997.

    12. [12]

      CHEN J W, CHEN J D, YU D N, ZHANG M, ZHU H, DU M L. Electrochim. Acta, 2017, 246:17-26.

    13. [13]

      LI D N, WANG A J, WEI J, ZHANG Q L, FENG J J. Int. J. Hydrogen. Energy., 2017, 42(31):19894-19902.

    14. [14]

      LI Y P, CHEN S M, LONG R, JU H X, WANG Z W, YU X X, GAO F Y, CAI Z J, WANG C M, XU Q, JIANG J, ZHU J F, SONG L, XIONG Y J. Nano. Energy, 2017, 34:306-312.

    15. [15]

      ZHENG L J, ZHENG S Z, WEI H R, DU L L, ZHU Z Y, CHEN J, YANG D C. ACS Appl. Mater. Interfaces, 2019, 11(6):6248-6256.

    16. [16]

      HUANG H, BAO S X, CHEN Q L, YANG Y A, JIANG Z Y, KUANG Q, WU X Y, XIE Z X, ZHENG L S. Nano Res., 2015, 8(8):2698-2705.

    17. [17]

      LUO F, ZHANG Q, YU X X, XIAO S L, LING Y, HU H, GUO L, YANG Z H, HUANG L, CAI W W, CHEN G H S. Angew. Chem., Int. Ed., 2018, 57(45):14862-14867.

    18. [18]

      XIA T, ZHAO M, TONG B, KANG Z A, WU Y F, DING W, FENG B M. Nano, 2019, 14(5):1950059.

    19. [19]

      PAN L J, YU G H, ZHAI D Y, LEE H R, ZHAO W T, LIU N, WANG H L, TEE B C, SHI Y, CUI Y, BAO Z N. Proc. Natl Acad. Sci. U. S. A., 2012, 109(24):9287-9292.

    20. [20]

      ZHANG J T, ZHAO Z H, XIA Z H, DAI L M. Nat. Nanotechnol., 2015, 10(5):444-452.

    21. [21]

      XING S Q, HE M M, LV G Z, XU F, WANG F P, ZHANG H J, WANG Y. J. Mater. Sci., 2021, 56(17):10523-10536.

    22. [22]

      LIU Y A, MCCUE A J, MIAO C L, FENG J T, LI D Q, ANDERSON J A. J. Catal., 2018, 364:406-414.

  • 加载中
    1. [1]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    2. [2]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    3. [3]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    4. [4]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    14. [14]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    15. [15]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    16. [16]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    17. [17]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

Metrics
  • PDF Downloads(21)
  • Abstract views(1332)
  • HTML views(352)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return