Citation:
MA Rong-Peng, YANG Xiao-Long, WANG Xian, GE Jun-Jie, LIU Chang-Peng, XING Wei. Evaluation of Palladium Phosphide as Efficient Electrocatalyst for Hydrogen Evolution Reaction[J]. Chinese Journal of Analytical Chemistry,
;2021, 49(12): 2032-2038.
doi:
10.19756/j.issn.0253-3820.210679
-
Hydrogen production by water electrolysis has the advantages such as high efficiency and green development, and higher hydrogen purity. The development of efficient electrocatalysts for hydrogen evolution reaction (HER) must be based on the minimal overpotential to trigger proton reduction and fast kinetics. Palladium-based catalysts are used as one of the electrocatalysts for HER. However, they typically exhibit low activity in electrocatalytic hydrogen evolution reaction as too strong Pd-H bonding makes the electronic desorption of H adatoms (Had) hardly occur. Based on this, a highly efficient catalyst with uniformly dispersed palladium phosphide nanoparticles (Pd3P NP) embedded in a nitrogen-phosphorus co-doped carbon material (Pd3P/NPC) was designed and synthesized in this work. The Pd3P/NPC presented a small overpotential of 11 mV to delivering 10 mA/cm2, and a robust stability, which was much better than Pd/C, other reported Pd-based catalysts, and even Pt/C. Moreover, the Pd3P/NPC electrocatalyst exhibited high turnover frequencies at 20 mV (5.95 H2/s). It was higher than that of commercial Pt/C and Pd/C catalysts. Experiments evidence revealed that the introduction of P atoms into the Pd nanocrystals formed a Pd-P bond, which restructured the electronic structure of Pd and changed the content of Pd(0) and Pd(+2), promoting the desorption of H atoms. Meanwhile, the introduction of P increased the active site and intrinsic activity.
-
-
-
[1]
ZHANG L J, JANG H, WANG Y, LI Z J, ZHANG W, KIM M G, YANG D J, LIU S G, LIU X, CHO J P. Adv. Sci., 2021, 8(15):2004516.
-
[2]
XIAO X, ZHANG H, XIONG Y, LIANG F, YANG Y W. Adv. Funct. Mater., 2021, 31(42):2105562.
-
[3]
KWEON D H, OKYAY M S, KIM S J, JEON J P, NOH H J, PARK N J, MAHMOOD J, BAEK J B. Nat. Commun., 2020, 11:1278.
-
[4]
WANG J, WEI Z Z, MAO S J, LI H R, WANG Y. Energy Environ. Sci., 2018, 11(4):800-806.
-
[5]
JIANG P, CHEN J T, WANG C L, YANG K, GONG S P, LIU S, LIN Z Y, LI M S, XIA G L, YANG Y, SU J W, CHEN Q W. Adv. Mater., 2018, 30(9):1705324.
-
[6]
CHAO T T, LUO X, CHEN W X, JIANG B, GE J J, LIN Y, WU G, WANG X Q, HU Y M, ZHUANG Z B, WU Y E, HONG X, LI Y D. Angew. Chem., Int. Ed., 2017, 56(50):16047-16051.
-
[7]
CHENG H F, YANG N L, LIU G G, GE Y Y, HUANG J T, YUN Q B, DU Y H, SUN C J, CHEN B, LIU J W, ZHANG H. Adv. Mater., 2020, 32(11):1902964.
-
[8]
CHEN J T, XIA G L, JIANG P, YANG Y, LI R, SHI R H, SU J W, CHEN Q W. ACS Appl. Mater. Interfaces, 2016, 8(21):13378-13383.
-
[9]
LI J, LI F, GUO S X, ZHANG J, MA J T. ACS Appl. Mater. Interfaces, 2017, 9(9):8151-8160.
-
[10]
BHOWMIK T, KUNDU M K, BARMAN S. ACS Catal., 2016, 6(3):1929-1941.
-
[11]
ZHANG D, ZHAO H, HUANG B L, LI B, LI H D, HAN Y, WANG Z C, WU X K, PAN Y, SUN Y J, SUN X M, LAI J P, WANG L. ACS Cent. Sci., 2019, 5(12):1991-1997.
-
[12]
CHEN J W, CHEN J D, YU D N, ZHANG M, ZHU H, DU M L. Electrochim. Acta, 2017, 246:17-26.
-
[13]
LI D N, WANG A J, WEI J, ZHANG Q L, FENG J J. Int. J. Hydrogen. Energy., 2017, 42(31):19894-19902.
-
[14]
LI Y P, CHEN S M, LONG R, JU H X, WANG Z W, YU X X, GAO F Y, CAI Z J, WANG C M, XU Q, JIANG J, ZHU J F, SONG L, XIONG Y J. Nano. Energy, 2017, 34:306-312.
-
[15]
ZHENG L J, ZHENG S Z, WEI H R, DU L L, ZHU Z Y, CHEN J, YANG D C. ACS Appl. Mater. Interfaces, 2019, 11(6):6248-6256.
-
[16]
HUANG H, BAO S X, CHEN Q L, YANG Y A, JIANG Z Y, KUANG Q, WU X Y, XIE Z X, ZHENG L S. Nano Res., 2015, 8(8):2698-2705.
-
[17]
LUO F, ZHANG Q, YU X X, XIAO S L, LING Y, HU H, GUO L, YANG Z H, HUANG L, CAI W W, CHEN G H S. Angew. Chem., Int. Ed., 2018, 57(45):14862-14867.
-
[18]
XIA T, ZHAO M, TONG B, KANG Z A, WU Y F, DING W, FENG B M. Nano, 2019, 14(5):1950059.
-
[19]
PAN L J, YU G H, ZHAI D Y, LEE H R, ZHAO W T, LIU N, WANG H L, TEE B C, SHI Y, CUI Y, BAO Z N. Proc. Natl Acad. Sci. U. S. A., 2012, 109(24):9287-9292.
-
[20]
ZHANG J T, ZHAO Z H, XIA Z H, DAI L M. Nat. Nanotechnol., 2015, 10(5):444-452.
-
[21]
XING S Q, HE M M, LV G Z, XU F, WANG F P, ZHANG H J, WANG Y. J. Mater. Sci., 2021, 56(17):10523-10536.
-
[22]
LIU Y A, MCCUE A J, MIAO C L, FENG J T, LI D Q, ANDERSON J A. J. Catal., 2018, 364:406-414.
-
[1]
-
-
-
[1]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[2]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[3]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[4]
Anqun LAI , Qiaoyu WU , Qingqing LIANG , Qiyong LI , Guowen DONG , Yongjie DING , Jia′nan CHEN , Qing YAN , Zhonghua PAN , Wangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151
-
[5]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[6]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[7]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[8]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[9]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[10]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[11]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[12]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[13]
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
-
[14]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[15]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[16]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[17]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[18]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[19]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[20]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[1]
Metrics
- PDF Downloads(21)
- Abstract views(1332)
- HTML views(352)
Login In
DownLoad: