Citation: LIU Lin,  BAN Yu,  WEI Yue,  WANG Ming-Zhe,  CHE Chao-Yue,  SHI Heng-Chong,  ZHANG Xu,  LUAN Shi-Fang. Preparation and Analysis of Antibacterial and Hemostatic Properties of Multifunctional Sodium Alginate Sponge[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(12): 1986-1994. doi: 10.19756/j.issn.0253-3820.210677 shu

Preparation and Analysis of Antibacterial and Hemostatic Properties of Multifunctional Sodium Alginate Sponge

  • Corresponding author: SHI Heng-Chong, shihc@ciac.ac.cn
  • Received Date: 12 August 2021
    Revised Date: 10 September 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.51973221), the Major Science and Technology Innovation Project of Shandong Province, China (No.2019JZZY011105), the Biomedical Materials Production Demonstration Platform of the Ministry of Industry and Information Technology of the People's Republic of China (No.TC190H32V/1) and the High-Tech Research & Development Program of the CAS-WEGO Group.

  • A multifunctional hemostatic sponge (CIP-HNTs/SAs) with rapid hemostasis and high efficiency antibacterial property was built by freeze-drying based on ciprofloxacin (CIP), halloysite (HNTs) and sodium alginate (SA). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), density method and weighing method were used to detect the composition, porous structure, porosity and water absorption of the sodium alginate sponge (HNTs/SAs). Blood clotting time (BCT) and blood clotting index (BCI) were applied to test the hemostatic of HNTs/SAs and the optimal halloysite loading ratio was selected by these tests. Furthermore, the activated partial thrombin time (APTT) and prothrombin time (PT) were used to explore the mechanism of sponge hemostasis. The halloysite hollow tube structure could load with antibacterial drugs. The components of halloysite loaded with antibacterial drugs were characterized by energy dispersive spectroscopy (EDS) and FTIR spectroscopy, and the loaded antibacterial drugs were quantitatively detected by ultraviolet (UV) absorption spectrum. The long-term antibacterial activity of CIP-HNTs/SAs was tested by the agar plate counting methodand inhibition zone, and the biocompatibility of CIP-HNTs/SAs was tested by the cell proliferation test kit (CCK-8) and the hemolysis rate of red blood cells. The results showed that the porous and hydrophilia of sodium alginate sponge could quickly absorb water in the blood to promote blood cell aggregation. Moreover, calcium ions (Ca2+) and halloysite could enhance the body's own coagulation cascade activity. Comparing with the coagulation time in vitro of the commercial gelatin hemostatic sponge, the sodium alginate sponge (HNTs/SA) containing halloysite could achieve rapid hemostasis in only 18 s. Meanwhile, CIP-HNTs/SAs had great antibacterial property and 7-day long-lasting antibacterial performance.
  • 加载中
    1. [1]

      WANG X H, YAN Y N, ZHANG R J. J. Bioact. Compact. Polym., 2006, 21(1):39-54.

    2. [2]

      LIU C Y, LIU X, LIU C Y, WANG N, CHEN H L, YAO W H, SUN G Z, SONG Q L, QIAO W H. Biomaterials, 2019, 205:23-37.

    3. [3]

      DAI C L, LIU C S, WEI J, HONG H, ZHAO Q H. Biomaterials, 2010, 31(30):7620-7630.

    4. [4]

      YU L S, SHANG X Q, CHEN H, XIAO L P, ZHU Y H, FAN J. Nat. Commun., 2019, 10:1932.

    5. [5]

      BENNETT B L, LITTLEJOHN L. Mil. Med., 2014, 179(5):497-514.

    6. [6]

      HICKMAN D A, PAWLOWSKI C L, SEKHON U D S, MARKS J, GUPTA A S. Adv. Mater., 2018, 30(4):1700859.

    7. [7]

      XI G, LIU W, CHEN M, LI Q, HAO X, WANG M, YANG X, FENG Y, HE H, SHI C, LI W. ACS Appl. Mater. Interfaces, 2019, 11(50):46558-46571.

    8. [8]

    9. [9]

      AMBROGI V, DONNADIO A, PIETRELLA D, LATTERINI L, PROIETTI F A, MARMOTTINI F, PADELETTI G, KACIULIS S, GIOVAGNOLI S, RICCI M. J. Mater. Chem. B, 2014, 2(36):6054-6063.

    10. [10]

    11. [11]

      LEUNG C H, TSENG H K, WANG W S, CHIANG H T, WU A Y, LIU C P. J. Microbiol. Immunol. Infect., 2014, 47(6):518-525.

    12. [12]

      CUSUMANO J A, DUPPER A C, MALIK Y, GAVIOLI E M, BANGA J, CABAN A B, NADKARNI D, OBLA A, VASA C V, MAZO D, ALTMAND R. Open Forum Infect. Dis., 2020, 7(11):ofaa518.

    13. [13]

      DESILVA R T, DISSANAYAKE R K, MANTILAKA M M M G P G, WIJESINGHE W P S L, KALEEL S S, PREMACHANDRA T N, WEERASINGHE L, AMARATUNGA G A J, DE SILVA K.M N. ACS Appl. Mater. Interfaces, 2018, 10(40):33913-33922.

    14. [14]

      UDANGAWA R N, MIKAEL P E, MANCINELLI C, CHAPMAN C, WILLARD C F, SIMMONST J, LINHARDT R J. ACS Appl. Mater. Interfaces, 2019, 11(17):15447-15456.

    15. [15]

    16. [16]

      BRONDANI D, SCHEEREN C W, DUPONT J, VIEIRA I C. Analyst, 2012, 137(16):3732-3739.

    17. [17]

    18. [18]

      CHE C, LIU L, WANG X, ZHANG X, LUAN S, YIN J, LI X, SHI H. ACS Biomater. Sci. Eng., 2020, 6(3):1776-1786.

    19. [19]

      BU Y Z, ZHANG L C, SUN G F, SUN F F, LIU J H, YANG F, TANG P F, WU D C. Adv. Mater., 2019,31(28):1901580.

    20. [20]

      DIMITRIEVSKA S, WANG J, LIN T, WEYERS A, BAI H L, QIN L F, LI G G, CAI C, KYPSON A, KRISTOFIK N, GARD A, SUNDARAM S, YAMAMOTO K, WU W, ZHAO L P, KURAL M H, YUAN Y F, MADRI J, KYRIAKIDES T R, LINHARDT R J, NIKLASON L E. Adv. Funct. Mater., 2020, 30(23):1908963.

    21. [21]

      LIU L, SHI H C, YU H, ZHOU R T, YIN J H, LUAN S F. Biomater. Sci., 2019, 7(12):5035-5043.

    22. [22]

      ZHANG K X, BAI X F, YUAN Z P, CAO X T, JIAO X Y, LI Y S, QIN Y, WEN Y Q, ZHANG X J. Biomaterials, 2019, 204:70-79

    23. [23]

      SARAJI M, JAFARI M T, MOSSADDEGH M. Anal. Chim. Acta, 2017, 964:85-95.

    24. [24]

    25. [25]

  • 加载中
    1. [1]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    2. [2]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(22)
  • Abstract views(1170)
  • HTML views(277)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return