Citation: ZHU Guo-Jian,  CHEN Ai-Ying,  WANG Ran-Ran,  SUN Jing. Research Progress of Wearable Sensors for Human Health Monitoring[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1673-1684. doi: 10.19756/j.issn.0253-3820.210664 shu

Research Progress of Wearable Sensors for Human Health Monitoring

  • Corresponding author: WANG Ran-Ran, wangranran@mail.sic.ac.cn
  • Received Date: 7 August 2021
    Revised Date: 27 November 2021

    Fund Project: Supported by the Austrian-Chinese Cooperative R&D Projects (No.GJHZ2046) and the Instrument and Equipment Development Program Sponsored by Chinese Academy of Sciences (No.YJKYYQ20180065).

  • Wearable electronic products have received more and more attention in the measurement and quantification of human vital signs and physiological information due to their small size, comfortable attachment, and convenient detection. They also have broad application prospects in the fields of disease diagnosis, rehabilitation treatment and daily health assessment. As a key module for collecting information in wearable electronic products, wearable sensors have received extensive attention from academia and industry, and have achieved rapid development. This article mainly focused on the application of wearable sensors in the field of health monitoring, focusing on the detection of key physiological and biochemical indicators, systematically expounding the research status and cutting-edge hotspots of corresponding wearable sensors, analyzing the advantages and disadvantages of various types of sensors, and discussing the future development trend of wearable sensors.
  • 加载中
    1. [1]

      TRUNG T Q, RAMASUNDARAM S, HWANG B U, LEE N E. Adv. Mater., 2016, 28(3):502-509.

    2. [2]

      STOPPA M, CHIOLERIO A. Sensors, 2014, 14(7):11957-11992.

    3. [3]

    4. [4]

      PANG Y, YANG Z, YANG Y, REN T L. Small, 2019, 16(15):1901124.

    5. [5]

      ZANG Y P, ZHANG F J, DI C A, ZHU D B. Mater. Horizons, 2015, 2(2):140-156.

    6. [6]

      VATANI M, LU Y, ENGEBERG E D, CHOI J W. Int. J. Precis. Eng. Man., 2015, 16(7):1375-1383.

    7. [7]

      YANG Y N, SHI L J, CAO Z R, WANG R R, SUN J. Adv. Funct. Mater., 2019, 29(14):1807882.

    8. [8]

      CHAO M, HE L, GONG M, LI N, LI X, PENG L, SHI F, ZHANG L, WAN P. ACS Nano, 2021, 15(6):9746-9758.

    9. [9]

      CHENG W, WANG J, MA Z, YAN K, WANG Y, WANG H, LI S, LI Y, PAN L, SHI Y. IEEE Electron. Device Lett., 2018, 39(2):288-291.

    10. [10]

      NIU H S, GAO S, YUE W J, LI Y, ZHOU W J, LIU H. Small, 2020, 16(4):1904774.

    11. [11]

      WANG X W, FU W, GAO G H, MEHAY M S, ZHENG L, WANG H, ZHAO W, LOH K P, ZHANG T, HUANG W, LIU Z. npj Flexible Electron., 2020, 4(1):8.

    12. [12]

      YANG T, DENG W L, CHU X, WANG X, HU Y T, FAN X, SONG J, GAO Y Y, ZHANG B B, TIAN G, XIONG D, ZHONG S, TANG L H, HU Y H, YANG W Q. ACS Nano, 2021, 15(7):11555-11563.

    13. [13]

      DUAN L Y, D'HOOGE D R, CARDON L. Prog. Mater. Sci., 2020, 114:100617.

    14. [14]

      HE F L, YOU X Y, WANG W G, BAI T, XUE G F, YE M D. Small Methods, 2021, 5(3):2001041.

    15. [15]

      MATHEW A A, CHANDRASEKHAR A, VIVEKANANDAN S. Nano Energy, 2021, 80:105566.

    16. [16]

      DINH T, NGUYEN T, PHAN H P, NGUYEN N T, DAO D V, BELL J. Biosens. Bioelectron., 2020, 166:112460.

    17. [17]

      ZHONG J W, LI Z Y, TAKAKUWA M, INOUE D, HASHIZUME D, JIANG Z, SHI Y J, OU L X, NAYEEM M O G, UMEZU S, FUKUDA K, SOMEYA T. Adv. Mater., 2021:2107758.

    18. [18]

      LUO Y, PEI Y C, FENG X M, ZHANG H, LU B H, WANG L. Mater. Lett., 2020, 260:126945.

    19. [19]

      FAN W J, HE Q, MENG K Y, TAN X L, ZHOU Z H, ZHANG G Q, YANG J, WANG Z L. Sci. Adv., 2020, 6(11):eaay2840.

    20. [20]

      CHU M, THAO N, PANDEY V, ZHOU Y X, PHAM H N, BAR-YOSEPH R, RADOM-AIZIK S, JAIN R, COOPER D M, KHINE M. npj Digital Med., 2019, 2:8.

    21. [21]

      ELGENDI M, FLETCHER R, LIANG Y B, HOWARD N, LOVELL N H, ABBOTT D, LIM K, WARD R. npj Digital Med., 2019, 2:60.

    22. [22]

      YANG T T, JIANG X, ZHONG Y J, ZHAO X L, LIN S Y, LI J, LI X M, XU J L, LI Z H, ZHU H W. ACS Sens., 2017, 2(7):967-974.

    23. [23]

      PANG C, KOO J H, NGUYEN A, CAVES J M, KIM M G, CHORTOS A, KIM K, WANG P J, TOK J B H, BAO Z N. Adv. Mater., 2015, 27(4):634-640.

    24. [24]

      CHIACO J M S C, PARIKH N I, FERGUSSON D J. Cleve. Clin. J. Med., 2013, 80(10):638-644.

    25. [25]

      ZHOU K, ZHANG C, XIONG Z, CHEN H Y, LI T, DING G L, YANG B D, LIAO Q F, ZHOU Y, HAN S T. Adv. Funct. Mater., 2020, 30(38):2001296.

    26. [26]

      CHENG Y M, WANG K, XU H, LI T G, JIN Q H, CUI D X. Anal. Bioanal. Chem., 2021, 413(24):6037-6057.

    27. [27]

      FANG Y S, ZOU Y J, XU J, CHEN G R, ZHOU Y H, DENG W L, ZHAO X, ROUSTAEI M, HSIAI T K, CHEN J. Adv. Mater., 2021, 33(41):2104178.

    28. [28]

      WANG F L, JIN P, FENG Y L, FU J, WANG P, LIU X, ZHANG Y C, MA Y J, YANG Y Y, YANG A M, FENG X. Sci. Adv., 2021, 7(44):eabi9283.

    29. [29]

      FU Y L, ZHAO J J, DONG Y, WANG X H. Sensors, 2020, 20(13):3651.

    30. [30]

      CHUN S, KIM D W, BAIK S, LEE H J, LEE J H, BHANG S H, PANG C. Adv. Funct. Mater., 2018, 28(52):1805224.

    31. [31]

      ZHANG L, KUMAR K S, HE H, CAI C J, HE X, GAO H X, YUE S Z, LI C S, SEET R C S, REN H L, OUYANG J Y. Nat. Commun., 2020, 11(1):4683.

    32. [32]

      KIM J, LEE M, SHIM H J, GHAFFARI R, CHO H R, SON D, JUNG Y H, SOH M, CHOI C, JUNG S, CHU K, JEON D, LEE S T, KIM J H, CHOI S H, HYEON T, KIM D H. Nat. Commun., 2014, 5:5747.

    33. [33]

      KALTENBRUNNER M, SEKITANI T, REEDER J, YOKOTA T, KURIBARA K, TOKUHARA T, DRACK M, SCHWÖDIAUER R, GRAZ I, BAUER-GOGONEA S, BAUER S, SOMEYA T. Nature, 2013, 499(7459):458-463.

    34. [34]

      SHIN J, JEONG B, KIM J, NAM V B, YOON Y, JUNG J, HONG S, LEE H, EOM H, YEO J, CHOI J, LEE D, KO S H. Adv. Mater., 2020, 32(2):1905527.

    35. [35]

      FENG R, TANG F, ZHANG N, WANG X H. ACS Appl. Mater. Interfaces, 2019, 11(42):38616-38624.

    36. [36]

      LI Y X, WANG R R, WANG G E, FENG S Y, SHI W G, CHENG Y, SHI L J, FU K Y, SUN J. ACS Nano, 2021, 16(1):473-484.

    37. [37]

      LI M, CHEN J, ZHONG W, LUO M, WANG W, QING X, LU Y, LIU Q, LIU K, WANG Y, WANG D. ACS Sens., 2020, 5(8):2545-2554.

    38. [38]

      LIU R P, HE L, CAO M J, SUN Z C, ZHU R Q, LI Y. Front. Chem., 2021, 9:539678.

    39. [39]

      HE Y Y, LI W, HAN N, WANG J P, ZHANG X X. Appl. Energy, 2019, 247:615-629.

    40. [40]

      CHEN J X, WEN H J, ZHANG G L, LEI F, FENG Q, LIU Y, CAO X D, DONG H. ACS Appl. Mater. Interfaces, 2020, 12(6):7565-7574.

    41. [41]

      ROSE D P, RATTERMAN M E, GRIFFIN D K, HOU L, KELLEY-LOUGHNANE N, NAIK R R, HAGEN J A, PAPAUTSKY I, HEIKENFELD J C. IEEE Trans. Biomed. Eng., 2015, 62(6):1457-1465.

    42. [42]

      CHOI J, GHAFFARI R, BAKER L B, ROGERS J A. Sci. Adv., 2018, 4(2):eaar3921.

    43. [43]

      LI G L, WEN D. J. Mater. Chem. B, 2020, 8(16):3423-3436.

    44. [44]

      SCHAZMANN B, MORRIS D, SLATER C, BEIRNE S, FAY C, REUVENY R, MOYNA N, DIAMOND D. Anal. Methods, 2010, 2(4):342-348.

    45. [45]

      LI S, MA Z, CAO Z L, PAN L J, SHI Y. Small, 2020, 16(9):1903822.

    46. [46]

      SEMPIONATTO J R, MARTIN A, GARCIA-CARMONA L, BARFIDOKHT A, KURNIAWAN J F, MORETO J R, TANG G D, SHIN A, LIU X F, ESCARPA A, WANG J. Electroanalysis, 2019, 31(2):239-245.

    47. [47]

      CAO Q P, LIANG B, TU T T, WEI J W, FANG L, YE X S. RSC Adv., 2019, 9(10):5674-5681.

    48. [48]

      SEMPIONATTO J R, NAKAGAWA T, PAVINATTO A, MENSAH S T, IMANI S, MERCIER P, WANG J. Lab Chip, 2017, 17(10):1834-1842.

    49. [49]

      BANDODKAR A J, GUTRUF P, CHOI J, LEE K, SEKINE Y, REEDER J T, JEANG W J, ARANYOSI A J, LEE S P, MODEL J B, GHAFFARI R, SU C J, LESHOCK J P, RAY T, VERRILLO A, THOMAS K, KRISHNAMURTHI V, HAN S, KIM J, KRISHNAN S, HANG T, ROGERS J A. Sci. Adv., 2019, 5(1):eaav3294.

    50. [50]

      IQBAL S M A, MAHGOUB I, DU E, LEAVITT M A, ASGHAR W. npj Flexible Electron., 2021, 10(17):2100577.

    51. [51]

      LIAO C Z, MAK C H, ZHANG M, CHAN H L W, YAN F. Adv. Mater., 2015, 27(4):676-681.

    52. [52]

      ARAKAWA T, KUROKI Y, NITTA H, CHOUHAN P, TOMA K, SAWADA S I, TAKEUCHI S, SEKITA T, AKIYOSHI K, MINAKUCHI S. Biosens.Bioelectron., 2016, 84:106-111.

    53. [53]

      ARAKAWA T, TOMOTO K, NITTA H, TOMA K, TAKEUCHI S, SEKITA T, MINAKUCHI S, MITSUBAYASHI K. Anal. Chem., 2020, 92(18):12201-12207.

    54. [54]

      BROZA Y Y, ZURI L, HAICK H. Sci. Rep., 2014, 4:4611.

    55. [55]

      HAICK H, BROZA Y Y, MOCHALSKI P, RUZSANYI V, AMANN A. Chem. Soc. Rev., 2014, 43(5):1423-1449.

    56. [56]

      WANG L L, JACKMAN J A, PARK J H, TAN E L, CHO N J. J. Mater. Chem. B, 2017, 5(22):4019-4024.

    57. [57]

      XU H, XIANG J X, LU Y F, ZHANG M K, LI J J, GAO B B, ZHAO Y J, GU Z Z. ACS Appl. Mater. Interfaces, 2018, 10(14):11785-11793.

    58. [58]

      HARADA S, HONDA W, ARIE T, AKITA S, TAKEI K. ACS Nano, 2014, 8(4):3921-3927.

    59. [59]

      HO D H, SUN Q, KIM S Y, HAN J T, KIM D H, CHO J H. Adv. Mater., 2016, 28(13):2601-2608.

    60. [60]

      ZHANG F J, ZANG Y P, HUANG D Z, DI C A, ZHU D B. Nat. Commun., 2015, 6:8356.

    61. [61]

      YAMAMOTO Y, HARADA S, YAMAMOTO D, HONDA W, ARIE T, AKITA S, TAKEI K. Sci. Adv., 2016, 2(11):e1601473.

    62. [62]

      HUA Q L, SUN J L, LIU H T, BAO R R, YU R M, ZHAI J Y, PAN C F, WANG Z L. Nat. Commun., 2018, 9:244.

    63. [63]

      CHOI M K, YANG J, KANG K, KIM D C, CHOI C, PARK C, KIM S J, CHAE S I, KIM T H, KIM J H. Nat. Commun., 2015, 6:7149.

    64. [64]

      HAN S, KIM M K, WANG B, WIE D S, WANG S, LEE C H. Adv. Mater., 2016, 28(46):10257-10265.

    65. [65]

      GONG S, SCHWALB W, WANG Y W, CHEN Y, TANG Y, SI J, SHIRINZADEH B, CHENG W L. Nat. Commun., 2014, 5:3132.

    66. [66]

      WANG Q, LING S J, LIANG X P, WANG H M, LU H J, ZHANG Y Y. Adv. Funct. Mater., 2019, 29(16):1808695.

    67. [67]

      GOGURLA N, KIM Y, CHO S, KIM J, KIM S. Adv. Mater., 2021, 33(24):2008308.

    68. [68]

      WU H, YANG G G, ZHU K H, LIU S Y, GUO W, JIANG Z, LI Z. Adv. Sci., 2021, 8(2):2001938.

  • 加载中
    1. [1]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    4. [4]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    8. [8]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    9. [9]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    10. [10]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    11. [11]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(30)
  • Abstract views(794)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return