Citation: ZHANG Nai-Qian,  FANG Qun. Progress of Single-cell Metabolite Analysis Technology Based on Microfluidic System[J]. Chinese Journal of Analytical Chemistry, ;2021, 49(11): 1779-1791. doi: 10.19756/j.issn.0253-3820.210636 shu

Progress of Single-cell Metabolite Analysis Technology Based on Microfluidic System

  • Corresponding author: FANG Qun, fangqun@zju.edu.cn
  • Received Date: 9 July 2021
    Revised Date: 30 August 2021

    Fund Project: Supported by the National Major Project for Development of Scientific Instrument, China (No.21827806).

  • Due to the heterogeneity between different cells, the analysis of metabolites at single cell level can provide abundant information for the study of complex biological systems.Microfluidic systems can manipulate fluids in microscale structures that are close to the size of cells, making microfluidic systems suitable for single-cell analysis. In this review, current single-cell metabolite analysis technology based on microfluidic systems was introduced. Various microfluidic single-cell metabolite analysis systems based on different detection techniques including fluorescence microscopic imaging, laser induced fluorescence, electrochemistry, mass spectrometry, chemiluminescence, sensor detection technology, as well as their applications were reviewed.
  • 加载中
    1. [1]

      TWEEDDALE H, NOTIEY-MEROBB L, FERENCI T. J. Bacteriol., 1988, 180(19):5109-5116.

    2. [2]

      HEINEMANN M, ZENOBI R. Curr. Opin. Biotechnol., 2011, 22(1):26-31.

    3. [3]

      SCHMID A, KORTMANN H, DITTRICH P S, BLANK L M. Curr. Opin. Biotechnol., 2010, 21(1):12-20.

    4. [4]

      JEONSSON H N, SVALAN H A. Angew. Chem., Int. Ed., 2012, 51(49):12176-12192.

    5. [5]

      WHITESIDES G M. Nature, 2006, 442(7101):368-373.

    6. [6]

      YIN H, MARSHALL D. Curr. Opin. Biotechnol., 2012, 23(1):110-119.

    7. [7]

      WHEELER A R, THRONDSET W R, WHELAN R J, LEACH A M, ZARE R N, LIAO Y H, FARRELL K, MANGER I D, DARIDON A. Anal. Chem., 2003, 75(14):3581-3586.

    8. [8]

      LI X J, LI P C H. Anal. Chem., 2005, 77(14):4315-4322.

    9. [9]

      KHAMENEHFAR A, WAN C P L, LI P C H, LETCHFORD K, BURT H M. Anal. Bioanal. Chem., 2014, 406(208):7071-7083.

    10. [10]

      XU C X, CAI L F. J. Lumin., 2014, 29(1):36-41.

    11. [11]

      LI X J, HUANG J B, TIBBITS G F, LI P C H. Electrophoresis, 2017, 28(24):4723-4733.

    12. [12]

      YAMADA A, KATANOSAKA Y, MOHRI S, NARUSE K. IEEE Trans. Nanobiosci., 2009, 8(4):306-311.

    13. [13]

      YAMAMURA S, KISHI H, TOKIMITSU Y, KONDO S, HONDA R, RAO S R, OMORI M, TAMIYA E, MURAGUCHI A. Anal. Chem., 2005, 77(24):8050-8056.

    14. [14]

      CHUNG K H, RIVET C A, KEMP M L, LU H. Anal. Chem., 2011, 83(18):7044-7052.

    15. [15]

      CHINGOZHA L, ZHAN M, ZHU C, LU H. Anal. Chem., 2014, 86(20):10138-10147.

    16. [16]

      JANG S, LEE B, JEONG H, JIN S H, JANG S, KIM S G, JUNG G Y, LEE CS. Lab Chip, 2016, 16(10):1909-1916.

    17. [17]

      URBANSKI J P, JOHNSON M T, CRAIG D D, POTTER D L, CARDNER D K, THORSEN T. Anal. Chem., 2008, 80(17):6500-6507.

    18. [18]

      STATZ S, VERBOKET P E, HASLER K, DITTRICH P S. Electrophoresis, 2017, 39(3):540-547.

    19. [19]

      ARMBRECHT L, GABERNET G, KURTH F, HISS J A, SCHNEIDER G, DITTRICH P S. Lab Chip, 2017, 17(17):2933-2940.

    20. [20]

      GAO J, YIN X F, FANG Z L. Lab Chip, 2004, 4(1):47-52.

    21. [21]

      SUN Y, YIN X F, LING Y Y, FANG Z L. Anal. Bioanal. Chem., 2005, 382(7):1472-1476.

    22. [22]

      LING Y Y, YIN X F, FANG Z L. Electrophoresis, 2005, 26(24):4759-4766.

    23. [23]

      YU L F, HUANG H Q, DONG X L, WU D P, QIN J H, LIN B C. Electrophoresis, 2008, 29(24):5055-5060.

    24. [24]

      ZHU L L, LU M, YIN X F. Talanta, 2008, 75(5):1227-1233.

    25. [25]

      XU C X, YIN X F. J. Chromatogr. A, 2011, 1218(5):726-732.

    26. [26]

      XU C X, WANG M, YIN X F. Analyst, 2011, 136(19):3877-3883.

    27. [27]

      ZHANG X Y, LI Q L, CHEN Z Z, LI H M, XU K H, ZHANG L S, TANG B. Lab Chip, 2011, 11(6):1144-1150.

    28. [28]

      METTO E C, EVANS K, BARNEY P, CULLBERTSON A H, GUNASEKARA D B, CARUSO G, HULVEY M K, SILVA J A F D, LUNTE S M, CULBERTSON C T. Anal. Chem., 2013, 85(21):10188-10195.

    29. [29]

      PATABADIGE D E W, SADEGHI J, KALUBOWILAGE M, BOSSMANN S H, CULBERTSON A H, LATIFI H, CULLBERTSON C T. Anal. Chem., 2016, 88(20):9920-9925.

    30. [30]

      SADEGHI J, PATABADIGE D E W, CULLBERTSON A H, LATIFI H, CULLBERTSON C T. Lab Chip, 2017, 17(1):145-155.

    31. [31]

      MCCLAIN M A, CULLBERTSON C T, JACOBSON S C, ALLBRITTON N L, SIMS C E, RAMSEY J M. Anal. Chem., 2003, 75(21):5646-5655.

    32. [32]

      KOVARIK M L, DICKINSON A J, ROY P, POONNEN R A, FINE J P, ALLBRITTON N L. Integr. Biol., 2014, 6(2):164-174.

    33. [33]

      SPEGEL C, HEISKANEN A, PEDERSEN S, EMNEUS J, RUZGAS T, TABORYSKI R. Lab Chip, 2008, 8(2):323-329.

    34. [34]

      GES I A, BAUDENBACHER F. Biosens. Bioelectron., 2010, 25(5):1019-1024.

    35. [35]

      WU R G, YANG C S, CHEING C C, TSENG F G. Interface Focus, 2011, 1(5):744-753.

    36. [36]

      LI L M, WANG W, ZHANG S H, CHEN S J, GUO S S, FRANCAIS O, CHENG J K, HUANG W H. Anal. Chem., 2011, 83(24):9524-9530.

    37. [37]

    38. [38]

      LI Y T, ZHANG S H, WANG X Y, ZHANG X W, OLEINICK A I, SVIR I, AMATORE C, HUANG W H. Angew Chem., Int. Ed., 2015, 54(32):9313-9318.

    39. [39]

      CHENG W, KLAUKE N, SEDGWICK H, SMITH G L, COOPER J M. Lab Chip, 2006, 6(11):1424-1431.

    40. [40]

      DOUGLAS E S, HSIAO S C, ONOE H, BERTOZZI C R, FRANCIS M B, MATHIES R A. Lab Chip, 2009, 9(14):2010-2015.

    41. [41]

      CAI X X, KLAUKE N, GLIDLE A, COBBOLD P, SMITH G L, COOPER J M. Anal. Chem., 2002, 74(4):908-914.

    42. [42]

      KHAMENEHFAR A, GANDHI M K, CHEN Y C, HOGGE D E, LI P C H. Anal. Chem., 2016, 88(11):5680-5688.

    43. [43]

      KIRSCHBAUM M, JAEGER M S, DUSCL C. Lab Chip, 2009, 9(24):3517-3525.

    44. [44]

      SHA C C, FAN Y J, CHENG J K, CHENG H. J. Sep. Sci., 2015, 38(13):2357-2362.

    45. [45]

      RUBAKHIN S S, SWEEDLER J V. Nat. Protoc., 2007, 2(8):1987-1997.

    46. [46]

      ZHONG M, LEE C Y, CROUSHORE C A, SWEEDLER J V. Lab Chip, 2012, 12(11):20-37.

    47. [47]

      WANG H, CHEN B B, HE M, HU B. Anal. Chem., 2017, 89(9):4931-4938.

    48. [48]

      MELLORS J S, JORABCHI K, SMITH L M, RAMSEY J M. Anal. Chem., 2010, 82(3):967-973.

    49. [49]

      LI X T, ZHAO S L, HU H K, LIU Y M. J. Chromatogr. A, 2016, 1451:156-163.

    50. [50]

      FAGERER S R, SCHMID T, IBANEZ A J, PABST M, STEINHOFF R, JEFIMOVS K, URBAN P L, ZENOBI R. Analyst, 2013, 138(22):6732-6736.

    51. [51]

      KRISMER J, SOBEK J, STEINHOFF R F, FAGERER S R, PABST M, ZENOBI R. Appl. Environ. Microbiol., 2015, 81(16):5546-5551.

    52. [52]

      ZHANG L C, XU T F, ZHANG J T, WONG S C C, HOU H W, WANG Y L. Anal. Chem., 2021, 93(30):10462-10468.

    53. [53]

      XU S T, LIU M X, BAI Y, LIU H W. Angew. Chem., Int. Ed., 2021, 60(4):1806-1812.

    54. [54]

      FENG J X, ZHANG X C, HUANG L, YAO H, YANG C D, MA X X, ZHANG S C, ZHANG X R. Anal. Chem., 2019, 91(9):5613-5620.

    55. [55]

      WANG R H, ZHAO H S, ZHANG X C, ZHAO X, SONG Z, OUYANG J. Anal. Chem., 2019, 91(5):3667-3674.

    56. [56]

      NAKATANI K, IZUMI Y, HATA K, BAMBA T. Mass Spectrom., 2020, 9(1):A0080.

    57. [57]

      LI Z S, WANG Z M, PAN J M, MA X X, ZHANG W P, OUYANG Z. Anal. Chem., 2020, 92(14):10138-10144.

    58. [58]

      PARK E J, REID K R, TANG W, KENNEDY R T, KOPELMAN R. J. Mater. Chem., 2005, 15(31):2913-2005.

    59. [59]

      KELBAUSKAS L, ASHILI S P, HOUKAL J, SMITH D, MOHAMMADREZA A, LEE K B, FORRESTER J, KUMAR A, ANIS Y H, PAULSON T G, YOUNGBULL C A, TIAN Y Q, HOLL M R, JOHNSON R H, MELDRUM D R. J. Biomed. Opt., 2012, 17(3):037008.

    60. [60]

      ASHILI S P, KELBAUSKAS L, HOUKAL J, SMITH D, TIAN Y P. Proc. SPIE, 2011, 7929:79290S.

    61. [61]

      LIU B F, OZAKI M, UTSUMI Y, HATTORI T, TERAVE S. Anal. Chem., 2003, 75(1):36-41.

    62. [62]

      ZHAO S L, LI X T, LIU Y M. Anal. Chem., 2009, 81(10):3873-3878.

    63. [63]

      YE F G, HUANG Y, XU Q, SHI M, ZHAO S L. Electrophoresis, 2010, 31(9):1630-1636.

    64. [64]

      ZHAO S L, HUANG Y, LIU Y M. J. Chromatogr. A, 2009, 1216(39):6746-6751.

    65. [65]

      ZHU Y, ZHANG Y X, CAI L F, FANG Q. Anal. Chem., 2013, 85(14):6723-6731.

    66. [66]

      POMPANO R R, LIU W S, DU W B, ISMAGILOV R F. Annual Rev. Anal. Chem., 2011, 4(4):59-81.

  • 加载中
    1. [1]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    2. [2]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    9. [9]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    10. [10]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    11. [11]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    15. [15]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    16. [16]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    17. [17]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    20. [20]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

Metrics
  • PDF Downloads(26)
  • Abstract views(1026)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return