Citation: LI Zhi-Xin,  CHEN Shu-Ting,  LUO Fang,  LIN Zhen-Yu. Construction and Application of Portable Hydrogen Sulfide Sensor with Capillary Liquid Column Height as Readout[J]. Chinese Journal of Analytical Chemistry, ;2022, 50(11): 1733-1742. doi: 10.19756/j.issn.0253-3820.210629 shu

Construction and Application of Portable Hydrogen Sulfide Sensor with Capillary Liquid Column Height as Readout

  • Corresponding author: LIN Zhen-Yu, zylin@fzu.edu.cn
  • Received Date: 14 July 2021
    Revised Date: 15 August 2021

    Fund Project: Supported by the National Natural Science Foundation of China (No.21775026).

  • A portable sensor using the height of the liquid column in capillary as readout was designed for detection of hydrogen sulfide (H2S). Cuprous ion (Cu+) could induce the combination of azide-modified magnetic beads (MBs-N3) and alkyne-modified platinum nanoparticles (Pt NPs-Alk) through click chemistry to form platinum nanoparticles connected to magnetic beads (MBs-Pt NPs). MBs-Pt NPs could be separated from the reaction mixture by magnetic force and transferred to a glass bottle filled with hydrogen peroxide (H2O2) solution with a capillary on bottle cap. In the above-mentioned closed reaction device, H2O2 was catalytically decomposed by Pt NPs and generated a large amount of oxygen, which caused the liquid column in the capillary to rise. In the presence of H2S, the azide groups on the surface of MBs-N3 could be reduced to amino groups by H2S, thereby reducing the click chemistry reaction sites between it and Pt NPs-Alk, ultimately leading to a reduction in the catalytic efficiency of H2O2 decomposition and a reduction in the rising height of the capillary liquid column. The change of height of the liquid column in the capillary had a linear relationship with H2S concentration in the range of 2.0 to 60 μmol/L, and the limit of detection was 1.9 μmol/L. The method was used for the rapid and simple determination of H2S in red wine with satisfactory results.
  • 加载中
    1. [1]

      LV L L, LUO W W, DIAO Q P. Spectrochim. Acta, Part A, 2021, 246:118959.

    2. [2]

    3. [3]

      WANG H, WANG J L, YANG S X, TIAN H Y, LIU Y G, SUN B G. Food Chem., 2018, 257:150-154.

    4. [4]

      FRANCO-LUESMA E, FERREIRA V. J. Agric. Food Chem., 2016, 64(32):6317-6326.

    5. [5]

    6. [6]

      LAWRENCE N S, DAVIS J, JIANG L, JONES T G J, DAVIES S N, COMPTON R G. Electroanalysis, 2000, 12(18):1453-1460.

    7. [7]

      ZHAO Y, YANG Y X, CUI L Y, ZHENG F J, SONG Q J. Biosens. Bioelectron., 2018, 117:53-59.

    8. [8]

      RADFORD-KNOERY J, CUTTER G A. Anal. Chem., 1993, 65(8):976-982.

    9. [9]

      CHEN J M, GUO L H, CHEN L F, QIU B, HONG G L, LIN Z Y. ACS Sens., 2020, 5(12):3964-3970.

    10. [10]

      YANG S, QI Y, LIU C H, WANG Y J, ZHAO Y R, WANG L L, LI J S, TAN W H, YANG R H. Anal. Chem., 2014, 86(15):7508-7515.

    11. [11]

      GAO J, LI Q, WANG C H, TAN H L. Sens. Actuators, B, 2017, 253:27-33.

    12. [12]

      YAN Y H, YU H, ZHANG Y J, ZHANG K, ZHU H J, YU T, JIANG H, WANG S H. ACS Appl. Mater. Interfaces, 2015, 7(6):3547-3553.

    13. [13]

      DAS S, SAHOO P. Sens. Actuators, B, 2019, 291:287-292.

    14. [14]

      PETRUCI J F D S, CARDOSO A A. Anal. Chem., 2016, 88(23):11714-11719.

    15. [15]

      SHIN H M, KIM D H, JUNG W J, JANG J S, KIM Y H, LEE Y, CHANG K Y, LEE J Y, PARK J, NAMKOONG K, KIM I D. ACS Nano, 2021, 15(9):14207-14217.

    16. [16]

      CHEN Z H, CHEN C Q, HUANG H W, LUO F, GUO L H, ZHANG L, LIN Z Y, CHEN G N. Anal. Chem., 2018, 90(10):6222-6228.

    17. [17]

      TAO Y Z, LIN Y S, LUO F, FU C L, LIN C Y, HE Y, CAI Z W, QIU B, LIN Z Y. Anal. Chim. Acta, 2021, 1149:338211.

    18. [18]

      KOLB H C, FINN M G, SHARPLESS K B. Angew. Chem., Int. Ed., 2001, 40(11):2004-2021.

    19. [19]

      AGRAHARI A K, BOSE P, JAISWAL M K, RAJKHOWA S, SINGH A S, HOTHA S, MISHRA N, TIWARI V K. Chem. Rev., 2021, 121(13):7638-7956.

    20. [20]

      EL-SAGHEER A H, BROWN T. Chem. Soc. Rev., 2010, 39(4):1388-1405.

    21. [21]

      COOKE R H, WU J, LIVINGSTON H A, PARKER G L, PEOPLES B C, EKIN A, BUSHMIRE A, STOREY R F. Prog. Org. Coat., 2021, 151:106047.

    22. [22]

      GU P, ZHANG G H, DENG Z Y, TANG Z W, ZHANG H F, KHUSBU F Y, WU K F, CHEN M J, MA C B. Spectrochim Acta, Part A, 2018, 203:195-200.

    23. [23]

      SHI L, JING C, MA W, LI D W, HALLS J E, MARKEN F, LONG Y T. Angew. Chem., Int. Ed., 2013, 52(23):6011-6014.

    24. [24]

      QIN Y F, LI M, YANG Y Y, GAO Z Y, ZHANG H S, ZHAO J J. RSC Adv., 2020, 10(10):6017-6021.

    25. [25]

      ZHENG W S, LI H L, CHEN W W, ZHANG J J, WANG N X, GUO X F, JIANG X Y. Small, 2018, 14(14):1703857.

    26. [26]

      XIE Q F, WENG X H, LU L J, LIN Z Y, XU X W, FU C L. Biosens. Bioelectron., 2016, 77:46-50.

    27. [27]

      ZHOU J, XU K F, ZHOU P, ZHENG O, LIN Z Y, GUO L H, QIU B, CHEN G N. Biosens. Bioelectron., 2014, 51:386-390.

    28. [28]

      XU K F, CHEN Z H, ZHOU L, ZHENG O, WU X P, GUO L H, QIU B, LIN Z Y, CHEN G N. Anal. Chem., 2015, 87(1):816-820.

    29. [29]

      ZHANG R P, CHEN X Y, SUN Z Y, CHEN S, GAO J, SUN Y, LI H B. Anal. Chem., 2019, 91(9):6149-6154.

    30. [30]

      KAZEMI F, KIASAT A R, SAYYAHI S. Phosphorus, Sulfur Silicon Relat. Elem., 2004, 179(9):1813-1817.

    31. [31]

      HONG L R, CHAI Y Q, ZHAO M, LIAO N, YUAN R, ZHUO Y. Biosens. Bioelectron., 2015, 63:392-398.

    32. [32]

      WANG A L, MA X M, YE Y Z, LUO F, GUO L H, QIU B, LIN Z Y, CHEN G N. Anal. Chem., 2018, 90(2):1087-1091.

    33. [33]

      SONG Y J, ZHANG Y Q, BERNARD P E, REUBEN J M, UENO N T, ARLINGHAUS R B, ZU Y L, QIN L D. Nat. Commun., 2012, 3:1283.

    34. [34]

      LEE S H, KWON D H, YIM C Y, JEON S M. Anal. Chem., 2015, 87(9):5004-5008.

    35. [35]

      ABATE M F, JIA S S, AHMED M G, LI X R, LIN L, CHEN X Q, ZHU Z, YANG C Y. Small, 2019, 15(14):1804890.

    36. [36]

      ZHU Z, GUAN Z C, JIA S S, LEI Z C, LIN S C, ZHANG H M, MA Y L, TIAN Z Q, YANG C Y J. Angew. Chem., Int. Ed., 2014, 53(46):12503-12507.

    37. [37]

      LIPPERT A R, NEW E J, CHANG C J. J. Am. Chem. Soc., 2011, 133(26):10078-10080.

    38. [38]

      WANG J, ZHANG X B, WANG Z L, WANG L M, XING W, LIU X. Nanoscale, 2012, 4(5):1549-1552.

    39. [39]

      WANG H, WANG J L, YANG S X, TIAN H Y, SUN B G, LIU Y G. J. Food Sci., 2018, 83(1):108-112.

    40. [40]

      CHEN Q W, XING P F, XU Y Q, LI H J, SUN S G. Chin. J. Chem., 2017, 35(4):477-482.

    41. [41]

      KUANG Y F, CHEN S, LONG Y F. Anal. Bioanal. Chem., 2017, 409(16):4001-4008.

    42. [42]

      HALL J R, SCHOENFISCH M H. Anal. Chem., 2018, 90(8):5194-5200.

    43. [43]

      ZENG H M, LIU Y L, XU Z G, WANG Y J, CHAI Y Q, YUAN R, LIU H Y. Chem. Commun., 2019, 55(79):11940-11943.

  • 加载中
    1. [1]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    10. [10]

      Changsheng Lu . Discovering-and-Sharing Model: a Case of the Inorganic Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 78-83. doi: 10.12461/PKU.DXHX202408028

    11. [11]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Weihua Jiang Yongsheng Zhou Qiaoqiao Teng . Progressive Teaching Model in the Practice and Exploration of Ideological and Political Education in Laboratory Courses: Taking the Organic Chemistry Experiment “Synthesis of Aspirin” as an Example. University Chemistry, 2024, 39(2): 99-104. doi: 10.3866/PKU.DXHX202306028

    17. [17]

      Qizhi Yao Gu Jin Pingping Zhu . Modular Analytical Chemistry Experimental Teaching Based on “Comprehensive + Exploratory” Experiments: “One Student, One Plan”, Individualized Experimental Teaching Method. University Chemistry, 2024, 39(3): 143-148. doi: 10.3866/PKU.DXHX202309071

    18. [18]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    19. [19]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    20. [20]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

Metrics
  • PDF Downloads(9)
  • Abstract views(738)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return